【题目】如图,在Rt△ABC中,∠B=90°,BC=5
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)AC的长是 ,AB的长是 .
(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.
(3)当t为何值,△BEF的面积是2
?
![]()
参考答案:
【答案】(1)10;5;(2)EF与AD平行且相等.(3)3.
【解析】分析:(1)、根据含有30°角的直角三角形的性质以及BC的长度求出AC和AB的长度;(2)、根据运动的速度得出AE=DF,根据垂直得出AE∥DF,从而得出四边形AEFD为平行四边形,从而得出EF和AD的关系;(3)、根据运动的速度用含t的代数式表示BE和BF的长度,然后根据直角三角形的面积计算法则得出t的值.
详解:(1)解:∵在Rt△ABC中,∠C=30°, ∴AC=2AB,
根据勾股定理得:AC2﹣AB2=BC2, ∴3AB2=75, ∴AB=5,AC=10;
(2)EF与AD平行且相等.
证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t, ∴DF=t. 又∵AE=t,
∴AE=DF, ∵AB⊥BC,DF⊥BC, ∴AE∥DF.
∴四边形AEFD为平行四边形. ∴EF与AD平行且相等.
(3)解:∵在Rt△CDF中,∠A=30°, ∴DF=
CD, ∴CF=
t,
又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5
﹣
t,
∴
, 即:
,
解得:t=3,t=7(不合题意舍去), ∴t=3.
故当t=3时,△BEF的面积为2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是多少米?
(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?
(3)小明在书店停留了多少分钟?
(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:

(1)∠BAE的度数;
(2)∠DAE的度数;
(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。

(1)求证:OE=OF;
(2)若BC=
,求AB的长。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一种新型娱乐设施的示意图,x轴所在位置记为地面,平台AB∥x轴,OA=6米,AB=2米,BC是反比例函数y=
的图象的一部分,CD是二次函数y=﹣x2+mx+n图象的一部分,连接点C为抛物线的顶点,且C点到地面的距离为2米,D点是娱乐设施与地面的一个接触点. 
(1)试求k,m,n的值;
(2)试求点B与点D的水平距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.

(1)求证:△ABO≌△DCO;
(2)△OBC是何种三角形?证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=kx+b和函数y=ax+m的图像如图所示,求下列不等式(组)的解集
(1) kx+b <ax+m的解集是
(2)
的解集是 (3)
的解集是 (4)
的解集是 
相关试题