【题目】如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.
![]()
(1)求证:AD∥BC;
(2)过点C作CG⊥AD于点F,交AE于点G.若AF=4,求BC的长.
参考答案:
【答案】(1)详见解析;(2)8.
【解析】
试题分析:(1)由已知AB=AC,AD平分∠CAE,易证∠B=∠DAG=
∠CAG,根据平行线的判定即可得:AD∥BC;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的性质即可求得结论.
试题解析:(1)证明:∵AD平分∠CAE,
∴∠DAG=
∠CAG,
∵AB=AC,
∴∠B=∠ACB,
∵∠CAG=∠B+∠ACB,
∴∠B=
∠CAG,
∴∠B=∠CAG,
∴AD∥BC;
(2)解:∵CG⊥AD,
∴∠AFC=∠AFG=90°,
在△AFC和△AFG中,
,
∴△AFC≌△AFG(ASA),
∴CF=GF,
∵AD∥BC,
∴△AGF∽△BGC,
∴GF:GC=AF:BC=1:2,
∴BC=2AF=2×4=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面推理过程:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:

∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代换).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B=∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD( ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.
(1)用画树状图或列表的方法列出所有可能的结果;
(2)这样的游戏规则是否公平?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中,正确的个数是( ) ①斜边和一直角边对应相等的两个直角三角形全等;
②有两边和它们的对应夹角相等的两个直角三角形全等;
③一锐角和斜边对应相等的两个直角三角形全等;
④两个锐角对应相等的两个直角三角形全等.
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )
A. 作一条线段等于已知线段
B. 作一个角等于已知角
C. 作两条线段等于已知三角形的边,并使其夹角等于已知角
D. 先作一条线段等于已知线段或先作一个角等于已知角
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
分别平分
的外角
、内角
、外角
.以下结论: ①
;②
;③
平分
;④
; ⑤
其中正确的结论是_______.
相关试题