【题目】如图,有一张三角形纸片ABC,∠A=80°,∠B=70°,D是AC边上一定点,过点D将纸片的一角折叠,使点C落在BC下方C′处,折痕DE与BC交于点E,当AB与∠C′的一边平行时,∠DEC'=_____度.
![]()
参考答案:
【答案】110度或125.
【解析】
根据题意分情况讨论:①当AB∥C′D时,②当AB∥C′E时,再根据折叠的性质得到答案.
∵∠A=80°,∠B=70°,
∴∠C=180°﹣∠A﹣∠B=180°﹣70°﹣80°=30°,
①当AB∥C′D时,∠CDC′=∠A=80°,
由折叠性质得:∠CDE=∠C′DE=
∠CDC′=40°,∠C=∠C′=30°,
∴∠DEC′=180°﹣∠C′DE﹣∠C′=180°﹣40°﹣30°=110°;
②当AB∥C′E时,设BE交C′D于点F,如图所示:
![]()
则∠B=∠BEC′=70°,
∴∠BFD=∠C′FE=180°﹣∠C′﹣∠BEC′=180°﹣30°﹣70°=80°,
∴∠ADF=360°﹣∠A﹣∠B﹣∠BFD=360°﹣80°﹣70°﹣80°=130°,
∴∠CDC′=180°﹣∠ADF=180°﹣130°=50°,
由折叠性质得:∠CDE=∠C′DE=
∠CDC′=25°,∠C=∠C′=30°,
∴∠DEC′=180°﹣∠C′DE﹣∠C′=180°﹣25°﹣30°=125°;
故答案为:110度或125.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).
(1)如图①,BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.
①若∠BAO=60°,则∠D的大小为 度,
②猜想:∠D的度数是否随A、B的移动发生变化?请说明理由.
(2)如图②,若∠ABC=
∠ABN, ∠BAD=
∠BAO,则∠D的大小为 度,若∠ABC=
∠ABN, ∠BAD=
∠BAO,则∠D的大小为 度(用含n的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=ax+b与反比例函数y=
(x>0)的图像在第一象限交于A、B两点,点B坐标为(4,2),连接OA、OB,过点B作BD⊥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的表达式;
(2)根据图像直接说出不等式ax+b-
<0的解集为______;(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC=PE,PE交CD于点F.
(1)求证:∠PCD=∠PED;
(2)连接EC,求证:EC=
AP;(3)如图②,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:己知:对于实数a≥0,b≥0,满足a+b≥2
,当且仅当a = b时,等号成立,此时取得代数式a+b的最小值.根据以上结论,解决以下问题:
(1)拓展:若a>0,当且仅当a=___时,a+
有最小值,最小值为____;(2)应用:
①如图1,已知点P为双曲线y=
(x>0)上的任意一点,过点P作PA⊥x轴,PB丄y轴,四边形OAPB的周长取得最小值时,求出点P的坐标以及周长最小值:②如图2,已知点Q是双曲线y=
(x>0)上一点,且PQ∥x轴, 连接OP、OQ,当线段OP取得最小值时,在平面内取一点C,使得以0、P、Q、C为顶点的四边形是平行四边形,求出点C的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校七年级有400名学生,其中2004年出生的有8人,2005年出生的有292人,2006年出生的有75人,其余的为2007年出生.
(1)该年级至少有两人同月同日生,这是一个 事件(填“必然”、“不可能”或“随机”);
(2)从这400名学生中随机选一人,选到2007年出生的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的大正方形是由两个小正方形和两个长方形组成.
(1)通过两种不同的方法计算大正方形的面积,可以得到一个数学等式;
(2)利用(1)中得到的结论,解决下面的问题:若a+b=2,ab=﹣3,
求:①a2+b2;
②a4+b4.

相关试题