【题目】有一些相同的房间需要粉刷墙面,一天3名师傅去粉刷8个房间,结果其中有40㎡墙面未来得及刷;同样时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30㎡墙面.
(1)求每个房间需要粉刷的墙面面积;
(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需几天完成?
(3)已知每名师傅、徒弟每天的工资分别是85元、65元,张老板要求在3天内(包括3天)完成36个房间的粉刷,问如何在这8人中雇用人员(不一定8人全部雇用),才合算呢?
参考答案:
【答案】
【解析】
试题(1)中可利用“每个房间需要粉刷的墙面面积”作为相等关系列方程求出徒弟和师傅的工作效率,再代入求每个房间需要粉刷的墙面面积;
(2)直接利用工作总量除以工作效率可求出工作时间;
(3)根据师傅与徒弟的工资以及工作效率分别分析得出即可.
试题解析:(1)设每个房间需要粉刷的墙面面积为x m2.
由题意得,
,
解得:x=50.
答:设每个房间需要粉刷的墙面面积为50m2.
(2)由(1)设每位师傅每天粉刷的墙面面积为
=120m2,
每位徒弟每天粉刷的墙面面积为120-30=90m2,
1个师傅带两个徒弟粉刷36个房间需要50×36÷(120+180)=6天.
答:若请1名师傅带2名徒弟去,需要6天完成.
(3)第一种情况:
假设1个师傅干3天,则:1×3×120=360平,师傅的费用是3×85=255; 还余50×36-360=1440平,需要徒弟的人次是:1440÷90=16(人次),这时不能按时完成任务;
第二种情况:
假设2个师傅干3天,则:2×3×120=720平,师傅的费用是3×85×2=510(元);还余50×36-720=1080平,需要徒弟的人次是:1080÷90=12(人次),则4个徒弟干3天,4×90×3=1080平,费用是4×65×3=780元,总费用是510+780=1290元;
第三种情况:
师傅2人徒弟4人同时干3天省钱.设雇m名师傅,n名徒弟,工资为B:
式1:m×3×120+n×3×90=36×50=1800,
即:4m+3n=20①,
得:n=(20-4m),
式2:3×85×m+3×65×n=B,
把n代入得:B=1300-5m②,
∵m,n均为整数,徒弟每天的工资比师傅每天的工资少,
∴师傅2名,再雇4名徒弟才合算.
答:在这8个人中雇2个师傅,再雇4名徒弟最合算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】老师在黑板上出了一道解方程的题
,小明马上举手,要求到黑板上做,他是这样做的:
……………… …①
…………………… …②
…………………… …③
………………………………… ④
………………………………… ⑤老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);
然后,你自己细心地解下面的方程:
(1)
(2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某人共收集邮票若干张,其中
是2000年以前的国内外发行的邮票,
是2001年国内发行的,
是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B两个村庄的坐标分别为(2,2)、(7,4),一辆汽车从原点O出发,在x轴上行驶.
(1)汽车行驶到什么位置时离村庄A最近?写出此位置的坐标.
(2)汽车行驶到什么位置时离村庄B最近?写出此位置的坐标.
(3)请在图中画出汽车到两村庄的距离和最短的位置,并求出此最短的距离和.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O是△ABC的外接圆,过点A作⊙O的切线与直径CD的延长线交于点E,已知AE=AC.

(1)求∠B的度数;
(2)若ED=1,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB为等腰三角形,顶点A的坐标(2,
),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,请你求出点O′的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣4ax+3a(a>0),与y轴交于点A,在x轴的正半轴上取一点B,使OB=2OA,抛物线的对称轴与抛物线交于点C,与x轴交于点D,与直线AB交于点E,连接BC.

(1)求点B,C的坐标(用含a的代数式表示);
(2)若△BCD与△BDE相似,求a的值;
(3)连接OE,记△OBE的外心为M,点M到直线AB的距离记为h,请探究h的值是否会随着a的变化而变化?如果变化,请写出h的取值范围;如果不变,请求出h的值.
相关试题