【题目】如图,AB是⊙O的直径,点C是
的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.![]()
(1)求证:AC=CD;
(2)若OC=
,求BH的长.
参考答案:
【答案】
(1)
证明:连接OC,
∵C是
的中点,AB是⊙O的直径,
∴CO⊥AB,
∵BD是⊙O的切线,
∴BD⊥AB,
∴OC∥BD,
∵OA=OB,
∴AC=CD;
(2)
解:∵E是OB的中点,
∴OE=BE,
在△COE和△FBE中,
,
∴△COE≌△FBE(ASA),
∴BF=CO,
∵OB=
,
∴BF=
,
∴AF=
=5,
∵AB是直径,
∴BH⊥AF,
∴△ABF∽△BHF,
∴
=
,
∴ABBF=AFBH,
∴BH=
=
=2.
【解析】(1)连接OC,由C是
的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;
(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=
,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.
【考点精析】利用切线的性质定理对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y.
(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;
(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=
的图象上的频率;
(3)求小兰、小田各取一次小球所确定的数x,y满足y<
的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.

(1)求证:EC=DA;
(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=
的图象经过点C,一次函数y=ax+b的图象经过A、C两点.
(1)求反比例函数与一次函数的解析式;
(2)求反比例函数与一次函数的另一个交点M的坐标;
(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于C点,且A(﹣2,0)、B(4,0),其顶点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.

(1)求抛物线的解析式,并写出顶点D的坐标;
(2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取值最大值时,过点P作x轴的垂线,垂足为F,连接EF,△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标,并判断点P′是否在该抛物线上. -
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )

A.43
B.45
C.51
D.53 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是( )

A.18
﹣9π
B.18﹣3π
C.9
﹣ 
D.18
﹣3π
相关试题