【题目】如图,在等腰Rt△ABC中,∠ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.
![]()
(1)求证:△ADF≌△CEF;
(2)试证明△DFE是等腰直角三角形.
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.
(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.
试题解析:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
又∵F是AB中点,
∴∠ACF=∠FCB=45°,
即,∠A=∠FCE=∠ACF=45°,且AF=CF,
在△ADF与△CEF中,
,
∴△ADF≌△CEF;
(2)由(1)可知△ADF≌△CEF,
∴DF=FE,
∴△DFE是等腰三角形,
又∵∠AFD=∠CFE,
∴∠AFD+∠DFC=∠CFE+∠DFC,
∴∠AFC=∠DFE,
∵∠AFC=90°,
∴∠DFE=90°,
∴△DFE是等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.点P为线段CD上一点(不与端点C、D重合),PE⊥PA,PE与BC的延长线交于点E,与AC交于点F,连接AE、AP、BP.
(1)求证:AP=BP;
(2)求∠EAP的度数;
(3)探究线段EC、PD之间的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=1,BC=
.将矩形ABCD绕点A逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD上,连接DD′,则DD′的长度为( ) 
A.
B.
C.
+1
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果三个数a、b、c满足其中一个数的两倍等于另外两个数的和,我们称这三个数a、b、c是“等差数”若正比例函数y=2x的图象上有三点A(
m﹣1,y1)、B(m,y2)、C(2m+1,y3),且这三点的纵坐标y1、y2、y3是“等差数”,则m=_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为( )

A. ﹣6或﹣3 B. ﹣8或1 C. ﹣1或﹣4 D. 1或﹣1
相关试题