【题目】如图,抛物线y=-x2-2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
![]()
(1)求A、B、C的坐标;
(2)设点H是第二象限内抛物线上的一点,且△HAB的面积是6,求点H的坐标;
(3)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积.
参考答案:
【答案】(1)A(-3,0),B(1,0),C(0,3);(2)H(-2,3);(3)
.
【解析】
试题分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.
(2)根据AB的长和三角形面积求得H的纵坐标为3,代入解析式即可求得横坐标;
(3)设M点横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周长d=-2m2-8m+2,将-2m2-8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.
试题解析:(1)由抛物线y=-x2-2x+3可知,C(0,3),
令y=0,则0=-x2-2x+3,解得x=-3或x=1,
∴A(-3,0),B(1,0).
(2)∵A(-3,0),B(1,0).
∴AB=4,
∵△HAB的面积是6,点H是第二象限内抛物线上的一点,
∴H的纵坐标为3,
把y=3代入y=-x2-2x+3得3=-x2-2x+3,解得x1=0,x2=-2,
∴H(-2,3);
(3)由抛物线y=-x2-2x+3可知,对称轴为x=-1,
设M点的横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周长=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,
∴当m=-2时矩形的周长最大.
∵A(-3,0),C(0,3),设直线AC解析式为y=kx+b,
则
解得:
,
∴解析式y=x+3,当x=-2时,则E(-2,1),
∴EM=1,AM=1,
∴S=
×AM×EM=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校去年投资2万元购买实验器材,预期明年的投资额为8万元.若该校这两年购买实验器材的投资的年平均增长率为x,则下面所列方程正确的是( )
A.2(1+2x)=8
B.2(1+x)2=8
C.8(1﹣2x)=2
D.8(1﹣x)2=2 -
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边上的高是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.

(1)线段OA1的长是 ,∠AOB1的度数是 ;
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.长度相等的弧叫等弧
B.平分弦的直径一定垂直于该弦
C.三角形的外心是三条角平分线的交点
D.不在同一直线上的三个点确定一个圆
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2=3x的解是:
-
科目: 来源: 题型:
查看答案和解析>>【题目】设x是有理数,那么下列各式中一定表示正数的是( )
A. 2008x B. x+2008 C. |2008x| D. |x|+2008
相关试题