【题目】上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为( )
![]()
A.45n mileB.30n mileC.20n mileD.15n mile
参考答案:
【答案】B
【解析】
根据三角形外角的性质,求证∠C=∠NAC,然后即可证明BC=AB,从而求得B到C的距离.
∵∠NBC=84°,∠NAC=42°,
∴∠C=84°﹣42°=42°.
∴∠C=∠NAC,
∴BC=AB,
∵上午8时,一条船从海岛A出发,以15n mile/h的速度向正北航行.10时到达海岛B处,
∴BC=AB=15×2=30n mile.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
.点
从点
出发,沿折线
—
以每秒1个单位长度的速度向终点
运动,点
从点
出发沿折线
-
以每秒3个单位长度的速度向终点
运动,
、
两点同时出发.分别过
、
两点作
于
,
于
.设点
的运动时间为
(秒).
(1)当
、
两点相遇时,求
的值.(2)在整个运动过程中,求
的长(用含
的代数式表示).(3)当
与
全等时,直接写出所有满足条件的
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为 时,四边形AOCE是菱形;
②若AE=6,EF=4,DE的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( ) 
A. 90°B. 95°C. 100°D. 105°
-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年5月12日是我国第十个全国防灾减灾日,也是汶川地震十周年.为了弘扬防灾减灾文化,普及防灾减灾知识和技能,郑州W中学通过学校安全教育平台号召全校学生进行学习,并对学生学习成果进行了随机抽取,现对部分学生成绩(x为整数,满分100分)进行统计.绘制了如图尚不完整的统计图表:
调查结果统计表
组别
分数段
频数
A
50≤x<60
a
B
60≤x<70
80
C
70≤x<80
100
D
80≤x<90
150
E
90≤x<100
120
合计
b
根据以上信息解答下列问题:
(1)填空:a= ,b= ;
(2)扇形统计图中,m的值为 ,“D”所对应的圆心角的度数是 度;
(3)本次调查测试成绩的中位数落在 组内;
(4)若参加学习的同学共有2000人,请你估计成绩在90分及以上的同学大约有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是( )

A. AD=CE B. MF=
CF C. ∠BEC=∠CDA D. AM=CM -
科目: 来源: 题型:
查看答案和解析>>【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:
.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73.)
相关试题