【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:
.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73.)
![]()
参考答案:
【答案】33.3.
【解析】
试题分析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.
试题解析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.
∵在Rt△BCF中,
=i=1:
,∴设BF=k,则CF=
k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=
.∵DF=DC+CF,∴DF=40+
.∵在Rt△AEH中,tan∠AEH=
,∴AH=tan37°×(40+
)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大楼AB的高度约为33.3米.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,截止5月1日浙江抗击新冠肺炎部分城市治愈总人数统计表,下列说法错误的是( )
城市
杭州
宁波
金华
温州
台州
治愈总人数
181
157
55
503
146
A.金华治愈总人数最少B.杭州治愈总人数最多
C.温州治愈总人数503人D.宁波治愈总人数比台州多
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平面直角坐标系xOy中,反比例函数
的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.(1)求平移后直线的表达式;
(2)求∠OBC的余切值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】 在△ABC中,∠A=40°.
(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;
(2)如图(2)若BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;
(3)如图(3)若BO、CO分别是△ABC的一内角和一外角角平分线,且相交于点O,求∠BOC;
(4)根据上述三问的结果,当∠A=n°时,分别可以得出∠BOC与∠A有怎样的数量关系(只需写出结论).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】三个连续整数中,n是最大的一个,这三个数的和为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,∠A=50°.
(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC= °.
(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.
(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).
(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.

相关试题