【题目】如图1,在△ABC中,AB=AC=20,tanB=
,点D为BC边上的动点(D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)详见解析;(2)
;(3)点D在BC边上运动 的过程中,存在某个位置,使得DF=CF,此时BD=18.
【解析】
(1)根据两角对应相等的两个三角形相似证明即可;
(2)解直角三角形求出BC,由△ABD∽△DCE,推出
=
,可得DB=
=
=
,由DE∥AB,推出
=
,求出AE即可;
(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.过点F作FH⊥BC于点H,过点A作AM⊥BC于点M,AN⊥FH于点N,则∠NHA=∠AMH=∠ANH=90°,由△AFN∽△ADM,可得
=
=tan∠ADF=tanB=
,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD即可解决问题.
解:(1)∵AB=AC,
∴∠B=∠ACB.
∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,
∴∠BAD=∠CDE.
∴△ABD∽△DCE.
(2)过点A作AM⊥BC于点M.
在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·
=3k.
由勾股定理,得:AB2=AM2+BM2,得:
202=(3k)2+(4k)2,解得:k=4.
∵AB=AC,AM⊥BC,
∴BC=2BM=8k=32.
∵DE∥AB,
∴∠BAD=∠ADE.
又∵∠ADE=∠B,∠B=∠ACB,
∴∠BAD=∠ACB.
∵∠ABD=∠CBA,
∴△ABD∽△CBA,
∴
=
,则DB=
=
=
.
∵DE∥AB,
∴
=
,
∴AE=
=
=
.
![]()
(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.
过点F作FH⊥BC于点H,过点A作AM⊥BC于点M,AN⊥FH于点N,则∠NHA=∠AMH=∠ANH=90°.
∴四边形AMHN为矩形.
∴∠MAN=90°,MH=AN.
∵AB=AC,AM⊥BC,
∴BM=CM=
BC=
×32=16.
在Rt△ABM中,由勾股定理,得:AM=
=
=12.
![]()
∵AN⊥FH,AM⊥BC,
∴∠ANF=90°=∠AMD.
∵∠DAF=90°=∠MAN,
∴∠NAF=∠MAD,
∴△AFN∽△ADM.
∴
=
=tan∠ADF=tanB=
.
∴AN=
AM=
×12=9.
∴CH=CM-MH=CM-AN=16-9=
当DF=CF时,由点D不与点C重合时,可知△DFC为等腰三角形.
又∵FH⊥DC,
∴CD=2CH=14.
∴BD=BC-CD=32-14=18.
∴点D在BC边上运动 的过程中,存在某个位置,使得DF=CF,此时BD=18.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形
中,
,
,点
、
分别在边
、
上.(1)若
,求证:四边形
是平行四边形;(2)若四边形
是菱形,求菱形
的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某网店专售一款电动牙刷,其成本为 20 元/支,销售中发现该商品每天的销售量
(支)与销售单价
(元/支)之间存在如图所示的关系. (1)求出
与
的函数关系式(不需要写出自变量取值范围); (2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?
(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出 200元捐赠给武汉,为了保证捐款后每天剩余利润不低于 550 元,试确定该款电动牙刷销售单价
的取值范围?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由.
(2)若AC=3,CD=2.5,求FG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(
, y2)、E(2,y3),则y1、y2、y3的大小关系是( ).A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=4﹣x与双曲线y
交于A,B两点,过B作直线BC⊥y轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:

(1)本次调查共抽取了 名学生,两幅统计图中的m= ,n= .
(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.
相关试题