【题目】如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )
![]()
A.
B. ![]()
C.
D. ![]()
参考答案:
【答案】C
【解析】试题分析:过A作AD⊥x轴于D,根据勾股定理和含30度角的直角三角形的性质求出AD,根据三角形的面积即可求出答案.
解:过A作AD⊥x轴于D,
∵OA=OC=4,∠AOC=60°,
∴OD=2,
由勾股定理得:AD=2
,
①当0≤t<2时,如图所示,ON=t,MN=
ON=
t,S=
ONMN=
t2;
![]()
②2≤t≤4时,ON=t,MN=2
,S=
ON2
=
t.
![]()
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.
(1)设一本书的厚度为acm,则EF= cm(结果保留根号);
(2)若书的长度AB=20cm,求一本书的厚度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P(a,b)在一次函数y=2x+1的图象上,则4a﹣2b﹣1=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.
(1)求抛物线C2的解析式.
(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.
(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为( )

A.3
B.4
C.6
D.8 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:

(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?
相关试题