【题目】已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)请你添加一个适当的条件 ,使得四边形ABCD是平行四边形,并证明你的结论;
(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=
,求⊙O的半径.
![]()
参考答案:
【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.
【解析】(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;
(2)作出相应的图形,如图所示;
(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
(1)当AD=BC时,四边形ABCD是平行四边形,理由为:
证明:∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形;
故答案为:AD=BC;
(2)作出相应的图形,如图所示;
![]()
(3)∵AD∥BC,
∴∠DAB+∠CBA=180°,
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∵AB为圆O的直径,点F在圆O上,
∴∠AFB=90°,
∴∠FAG+∠FGA=90°,
∵AE平分∠DAB,
∴∠FAG=∠EAB,
∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF=
,
∵AE=4,
∴AB=5,
则圆O的半径为2.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.
(1)求扇形OBC的面积(结果保留π);
(2)求证:CD是⊙O的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+ b的图象分别与x轴和y轴交于点A、B(0,-2),与正比例函数y=x的图象交于点C(m,2).
(1)求m的值和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出使函数y =kx +b的值大于函数y=x的值的自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了促进学生多样化发展,某中学每周五组织学生开展社团活动,分别设置了体育、舞蹈、文学、音乐社团(要求人人参加社团,并且每人只能参加一项),为了解学生喜欢哪种社团活动,学校组织学生会成员随机抽取部分学生进行问卷调查,根据收集到的数据,绘制成了两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)此次共调查了______名学生;
(2)将条形统计图补充完整;
(3)图2中音乐社团所在扇形的圆心角的度数为______;
(4)若该校共有学生1600人,估计该校喜爱体育社团的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.
(1)如图1,点G在CH的延长线上时,
①若∠GAB=36°,则∠MCD=______.
②猜想:∠GAB与∠MCD之间的数量关系是______.
(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着“一带一路”国际合作高峰论坛在北京举行,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知甲种商品的销售单价为900元,乙种商品的销售单价为600元.
(1)已知乙种商品的销售量不能低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?
(2)在(1)的条件下,要使甲、乙两种商品的销售总收入不低于5700万元,请求甲种商品销售量的范围.
相关试题