【题目】如图,在平面直角坐标系中,函数y=
(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.![]()
(1)若△ABD的面积为3,求k的值和直线AB的解析式;
(2)求证:
=
;
(3)若AD∥BC,求点B的坐标.
参考答案:
【答案】
(1)
解:∵函数y=
(x>0,k是常数)的图象经过A(2,6),
∴k=2×6=12,
∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,
∴mn=12①,BD=m,AE=6﹣n,
∵△ABD的面积为3,
∴
BDAE=3,
∴
m(6﹣n)=3②,
联立①②得,m=3,n=4,
∴B(3,4);
设直线AB的解析式为y=kx+b(k≠0),
则
,
∴
,
∴直线AB的解析式为y=﹣2x+10
(2)
证明:∵A(2,6),B(m,n),
∴BE=m﹣2,CE=n,DE=2,AE=6﹣n,
∴DEAE=2(6﹣n)=12﹣2n,
BECE=n(m﹣2)=mn﹣2n=12﹣2n,
∴DEAE=BECE,
∴ ![]()
(3)
解:由(2)知,
,
∵∠AEB=∠DEC=90°,
∴△DEC∽△BEA,
∴∠CDE=∠ABE
∴AB∥CD,
∵AD∥BC,
∴四边形ADCB是平行四边形.
又∵AC⊥BD,
∴四边形ADCB是菱形,
∴DE=BE,CE=AE.
∴B(4,3)
【解析】(1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;(2)先表示出BE,CE,DE,AE,进而求出BECE和DECE即可得出结论;(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中.AB=AC.∠BAC=90
.E是AC边上的一点,延长BA至D,使AD=AE,连接DE,CD.(l)图中是否存在两个三角形全等?如果存在请写出哪两个三角形全等,并且证明;如果不存在,请说明理由;
(2)若∠CBE=30
,求∠ADC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.
(1)如图1,∠AEE'= °;

(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;

(3)如图3,在(2)的条件下,如果CE=2,AE=
,求ME的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知线段AB=
(
为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=_______(用含
的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;
(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ-2PQ与1的大小关系,并说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为 .
相关试题