【题目】如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在
上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.
(1)求证:CF⊥AB;
(2)若CD=4,CB=4
,cos∠ACF=
,求EF的长.
![]()
参考答案:
【答案】(1)详见解析;(2)2
.
【解析】试题分析:(1)连接BD,由AB是 O的直径,得到∠ADB=90°,根据余角的性质得到∠CFA=180°-(DAB+∠3)=90°,于是得到结论;
(2)连接OE,由∠ADB=90°,得到∠CDB=180°-∠ADB=90°,根据勾股定理得到DB=
=8解直角三角形得到CD=4,根据勾股定理即可得到结论.
试题解析:(1)连接BD,
![]()
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠1=90°,
∵∠1=∠2,∠2=∠3,
∴∠1=∠3,
∴∠DAB+∠3=90°,
∴∠CFA=180°﹣(DAB+∠3)=90°,
∴CF⊥AB;
(2)连接OE,
∵∠ADB=90°,
∴∠CDB=180°﹣∠ADB=90°,
∵在Rt△CDB中,CD=4,CB=4
,
∴DB=
=8,
∵∠1=∠3,
∴cos∠1=cos∠3=
=
,
∴AB=10,
∴OA=OE=5,AD=
=6,
∵CD=4,∴AC=AD+CD=10,
∵CF=ACcos∠3=8,
∴AF=
=6,
∴OF=AF﹣OA=1,
∴EF=
=2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+8与x轴、y轴分别交于A.B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是( )
A. (0,4) B. (0,3) C. (﹣4,0) D. (0,﹣3)
-
科目: 来源: 题型:
查看答案和解析>>【题目】京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的
;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
A. b≥
B. b≥1或b≤﹣1 C. b≥2 D. 1≤b≤2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形
的顶点
、
在
轴上,顶点
在
轴上,已知
,
,
.
(1)平行四边形
的面积为________;(2)如图1,点
是
边上的一点,若
的面积是平行四边形
的
,求点
的坐标;(3)如图2,将
绕点
顺时针旋转,旋转得
,在整个旋转过程中,能否使以点
、
、
、
为顶点的四边形是平行四边形?若能,求点
的坐标;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为0.75;若存在,指出其中的一种平移方式;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)
(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)

相关试题