【题目】如图,已知Rt△ABC中,∠C=90°,∠A=60°,AC=3cm,AB=6m,点P在线段AC上以1cm/s的速度由点C向点A运动,同时,点Q在线段AB上以2cm/s的速度由点A向点B运动,设运动时间为t(s).
(1)当t=1时,判断△APQ的形状,并说明理由;
(2)当t为何值时,△APQ与△CQP全等?请写出证明过程.
![]()
参考答案:
【答案】(1)△APQ是等边三角形;(2)t=1.5.
【解析】
(1)分别求出AP、AQ的长,根据等边三角形的判定定理即可得出结论;
(2)根据全等的条件和已知分别求出AP、CP、AQ、CQ的长,根据全等三角形的判定定理即可得出结论.
(1)△APQ是等边三角形.理由如下:
∵t=1,∴AP=3﹣1×1=2,AQ=2×1=2,∴AP=AQ.
∵∠A=60°,∴△APQ是等边三角形;
(2)存在t,使△APQ和△CPQ全等.当t=1.5s时,△APQ和△CPQ全等.理由如下:∵在Rt△ACB中,AB=6,AC=3,∴∠B=30°,∠A=60°,当t=1.5时,此时AP=PC.
∵t=1.5s,∴AP=CP=1.5cm.
∵AQ=3cm,∴AQ=AC.
又∵∠A=60°,∴△ACQ是等边三角形,∴AQ=CQ.
在△APQ和△CPQ中,∵AQ=CQ,AP=CP,PQ=PQ,∴△APQ≌△CPQ(SSS);
即存在时间t,使△APQ和△CPQ全等,时间t=1.5;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,我们规定:用符号
表示不大于
的最大整数,称
为a的根整数,例如:
,
=3.(1)仿照以上方法计算:
=______;
=_____.(2)若
,写出满足题意的x的整数值______.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次
=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.
(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1 . 试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的
,请说明理由.(写出证明及计算过程) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列条件后仍不能使△ABD≌△CAE的条件是( )

A. AD=AE B. AB=AC C. BD=AE D. AD=CE
-
科目: 来源: 题型:
查看答案和解析>>【题目】尝试探究并解答:
(1)为了求代数式x2+2x+3的值,我们必须知道x的值,若x=1,则这个代数式的值为 ;若x=2,则这个代数式的值为 ,可见,这个代数式的值因x的取值不同而 (填“变化”或“不变”).尽管如此,我们还是有办法来考虑这个代数式的值的范围.
(2)本学期我们学习了形如a2+2ab+b2及a2﹣2ab+b2的式子,我们把这样的多项式叫做“完全平方式”在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式同样地,把一个多项式进行部分因式分解可以解决代数式的最大(或最小)值问题例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因为(x+1)2≥0,所以(x+1)2+2≥2,所以这个代数式x2+2x+3有最小值是2,这时相应的x的值是 .
(3)猜想:①4x2﹣12x+13的最小值是 ;
②﹣x2﹣2x+3有 值(填“最大”或“最小”).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC。求证:ED平分∠FEC。

相关试题