【题目】如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是( )
![]()
A. 矩形 B. 菱形 C. 正方形 D. 无法判断
参考答案:
【答案】B
【解析】
首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分线,
∴AO=CO,
在△AOM和△CON中
,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四边形ANCM是平行四边形,
∵AC⊥MN,
∴四边形ANCM是菱形,
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现粗国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.
(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?
(2)如果学校准备租赁A型车和B型车共14辆(其中B型车最多7辆),已知A型车每车最多可以载35人,日租金为2000元,B型车每车最多可以载45人,日租金为3000元,请求出最经济的租车方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,已知点A(0,10),点B(m,10)在第一象限,连接AB、OB.
(1)如图1,若OB=12,求m的值.

(2)如图2,当m=10时,过B作BC⊥x轴于C,E为AB边上一点,AE=
,把△OAE沿直线OE翻折得到△OFE(点A的对应点为点F),连接BF、CF,求证:BF⊥CF.
(3)如图3,将△AOB沿直线OB翻折得到△GOB(点A的对应点为点G),若点G到x轴的距离不大于8,直接写出m的取值范围为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=﹣x2+bx+c(其中b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标.
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.
(3)沿直线AC方向平移该二次函数图象,使得CM与平移前的CB相等,求平移后点M的坐标.
(4)点P是直线AC上的动点,过点P作直线AC的垂线PQ,记点M关于直线PQ的对称点为M′.当以点P、A、M、M′为顶点的四边形为平行四边形时,直接写出点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以ABCD 的四条边为边,分别向外作正方形,连结 EF,GH,IJ,KL.如果ABCD 的 面积为 8,则图中阴影部分四个三角形的面积和为( )

A.8B.12C.16D.20
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,边长为a,点O是对角线AC的中点,点E是BC边上的一个动点,OE⊥OF交AB边于点F,点G,H分别是点E,F关于直线AC的对称点,点E从点C运动到点B时,则图中阴影部分的面积是___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,要使平行四边形ABCD成为菱形,需添加的条件是( )

A. AC=BD B. ∠1=∠2 C. ∠ABC=90° D. ∠1=90°
相关试题