【题目】如图,抛物线
与
轴交于
、
两点(点
在点
的左侧),点
的坐标为
,与
轴交于点
,作直线
.动点
在
轴上运动,过点
作
轴,交抛物线于点
,交直线
于点
,设点
的横坐标为
.
(Ⅰ)求抛物线的解析式和直线
的解析式;
(Ⅱ)当点
在线段
上运动时,求线段
的最大值;
(Ⅲ)当以
、
、
、
为顶点的四边形是平行四边形时,直接写出
的值.![]()
参考答案:
【答案】解:(I)∵抛物线过A、C两点,
∴代入抛物线解析式可得
,解得
,
∴抛物线解析式为y=﹣x2+2x+3,
令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,
∵B点在A点右侧,
∴B点坐标为(3,0),
设直线BC解析式为y=kx+s,
把B、C坐标代入可得
,解得
,
∴直线BC解析式为y=﹣x+3;
(Ⅱ)∵PM⊥x轴,点P的横坐标为m,
∴M(m,﹣m2+2m+3),N(m,- m+3),
∵P在线段OB上运动,
∴M点在N点上方,
∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣
)2+
,
∴当m=
时,MN有最大值,MN的最大值为
;
(Ⅲ)∵PM⊥x轴,
∴MN∥OC,
当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,
当点P在线段OB上时,则有MN=﹣m2+3m,
∴﹣m2+3m=3,此方程无实数根,
当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,
∴m2﹣3m=3,解得m=
或m=
,
综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为
或 ![]()
【解析】(Ⅰ)利用待定系数法可求出抛物线的解析式和直线BC解析式;
(Ⅱ)点P的横坐标为m,根据题意可用m表示出M、N的坐标,从而得出MN与m的函数关系式,再化成顶点式可求其最值;
(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,且OC∥MN,可得MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,即m2﹣3m=3,从而求出m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,用长为
的铝合金条制成“日”字形窗框,若窗框的宽为
,窗户的透光面积为
(铝合金条的宽度不计).
(Ⅰ)求出
与
的函数关系式;
(Ⅱ)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】两个大小不同的等腰直角三角形三角板如图
所示放置,图
是由它抽象出的几何图形,B,C,E在同一条直线上,联结DC,
请找出图
中的全等三角形,并给予说明
说明:结论中不得含有未标识的字母
;
试说明:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知
为正方形
的中心,分别延长
到点
,
到点
,使
,
,连结
,将△
绕点
逆时针旋转
角得到△
(如图2).连结
、
.
(Ⅰ)探究
与
的数量关系,并给予证明;
(Ⅱ)当
,
时,求:
①
的度数;
②
的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD⊥AB于点D,AC=4,BC=3,DB=
,(1)求CD、AD的长
(2)判断△ABC的形状,并说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.
(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;
(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,AB∥CD,∠A=38°,∠C=50°,求∠APC的度数.(提示:作PE∥AB).
(2)如图2,AB∥DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.
(3)在(2)的条件下,如果点P在段线OB上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.

相关试题