【题目】如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是( ) ![]()
A.4.5
B.5
C.5.5
D.6
参考答案:
【答案】A
【解析】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点, ∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,
∴△AEF的面积=
×△ABE的面积=
×△ABD的面积=
×△ABC的面积=
,
同理可得△AEG的面积=
,
△BCE的面积=
×△ABC的面积=6,
又∵FG是△BCE的中位线,
∴△EFG的面积=
×△BCE的面积=
,
∴△AFG的面积是
×3=
,
故选:A.
【考点精析】利用三角形的面积和三角形中位线定理对题目进行判断即可得到答案,需要熟知三角形的面积=1/2×底×高;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益. -
科目: 来源: 题型:
查看答案和解析>>【题目】若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数
(k为常数,k≠0)的图象上,且这三点的纵坐标y1 , y2 , y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1 , 0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)两点.
①求证:A,B,C三点的横坐标x1 , x2 , x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(
,
)与原点O的距离OP的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.

(1)若△OAC为等腰直角三角形,求m的值;
(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);
(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0 , y0)总有n+
≥﹣4
my02﹣12
y0﹣50成立,求实数n的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )

A.①③
B.②③
C.②④
D.②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF//AD交AC于F.若AB=11,AC=15,则FC的长为( )

A.11
B.12
C.13
D.14 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为 .

相关试题