【题目】如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.![]()
(1)若△OAC为等腰直角三角形,求m的值;
(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);
(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0 , y0)总有n+
≥﹣4
my02﹣12
y0﹣50成立,求实数n的最小值.
参考答案:
【答案】
(1)
解:令y=mx2﹣16mx+48m=m(x﹣4)(x﹣12)=0,则x1=12,x2=4,
∴A(12,0),即OA=12,
又∵C(0,48m),
∴当△OAC为等腰直角三角形时,OA=OC,
即12=48m,
∴m= ![]()
![]()
(2)
解:由(1)可知点C(0,48m),
∵对任意m>0,C、E两点总关于原点对称,
∴必有E(0,﹣48m),
设直线AE的解析式为y=kx+b,
将E(0,﹣48m),A(12,0)代入,可得
,解得
,
∴直线AE的解析式为y=4mx﹣48m,
∵点D为直线AE与抛物线的交点,
∴解方程组
,可得
或
(点A舍去),
即点D的坐标为(8,﹣16m)
(3)
解:当∠ODB=∠OAD,∠DOB=∠AOD时,△ODB∽△OAD,
∴OD2=OA×OB=4×12=48,
∴OD=4
,
又∵点D为线段AE的中点,
∴AE=2OD=8
,
又∵OA=12,
∴OE=
=4
,
∴D(6,﹣2
),
把D(6,﹣2
)代入抛物线y=mx2﹣16mx+48m,可得﹣2
=36m﹣96m+48m,
解得m=
,
∴抛物线的解析式为y=
(x﹣4)(x﹣12),
即y=
(x﹣8)2﹣
,
∵点P(x0,y0)为抛物线上任意一点,
∴y0≥﹣
,
令t=﹣4
my02﹣12
y0﹣50=﹣2y02﹣12
y0﹣50=﹣2(y0+3
)2+4,
则当y0≥﹣
时,t最大值=﹣2(﹣
+3
)2+4=
,
若要使n+
≥﹣4
my02﹣12
y0﹣50成立,则n+
≥
,
∴n≥3
,
∴实数n的最小值为
.
【解析】(1)根据y=mx2﹣16mx+48m,可得A(12,0),C(0,48m),再根据OA=OC,即可得到12=48m,进而得出m的值;(2)根据C、E两点总关于原点对称,得到E(0,﹣48m),根据E(0,﹣48m),A(12,0)可得直线AE的解析式,最后解方程组即可得到直线AE与抛物线的交点D的坐标;(3)根据△ODB∽△OAD,可得OD=4
,进而得到D(6,﹣2
),代入抛物线y=mx2﹣16mx+48m,可得抛物线解析式,再根据点P(x0 , y0)为抛物线上任意一点,即可得出y0≥﹣
,令t=﹣2(y0+3
)2+4,可得t最大值=﹣2(﹣
+3
)2+4=
,再根据n+
≥
,可得实数n的最小值为
.
【考点精析】通过灵活运用等腰直角三角形和确定一次函数的表达式,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,
=

(1)求证:OA=OB;
(2)已知AB=4
,OA=4,求阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益. -
科目: 来源: 题型:
查看答案和解析>>【题目】若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数
(k为常数,k≠0)的图象上,且这三点的纵坐标y1 , y2 , y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1 , 0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)两点.
①求证:A,B,C三点的横坐标x1 , x2 , x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(
,
)与原点O的距离OP的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是( )

A.4.5
B.5
C.5.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )

A.①③
B.②③
C.②④
D.②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF//AD交AC于F.若AB=11,AC=15,则FC的长为( )

A.11
B.12
C.13
D.14
相关试题