【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,
∵S四边形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四边形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2 .
![]()
参考答案:
【答案】证明见解析.
【解析】试题分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED ,两者相等,整理即可得证.
试题解析:连结BD,过点B作DE边上的高BF,则BF=b﹣a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=
ab+
b2+
ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=
ab+
c2+
a(b﹣a),
∴
ab+
b2+
ab=
ab+
c2+
a(b﹣a),
∴a2+b2=c2 .
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A在双曲线y=
上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为( ) 
A.8﹣2
B.8+2
C.3
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.

(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;
(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的长,再计算三角形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,若点P(4,0)在该抛物线上,则一元二次方程ax2+bx+c=0的两根为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD和四边形ACED都是平行四边形,点R在DE上,且DR:RE=5:4,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:|﹣
|+
sin45°﹣(
)﹣1﹣
(π﹣3)0 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
A.4 B.3 C.2 D.1

相关试题