【题目】如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E. ![]()
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.
参考答案:
【答案】
(1)解:∵∠D=60°,
∴∠B=60°(圆周角定理),
又∵AB=6,
∴BC=3,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵OE⊥AC,
∴OE∥BC,
又∵点O是AB中点,
∴OE是△ABC的中位线,
∴OE=
BC= ![]()
(2)解:连接OC,
![]()
则易得△COE≌△AFE,
故阴影部分的面积=扇形FOC的面积,
S扇形FOC=
=
π.
即可得阴影部分的面积为
π
【解析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.
【考点精析】认真审题,首先需要了解含30度角的直角三角形(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半),还要掌握垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点
为
的角平分线上的一点,点
在边
上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边
上取一点
,使得
,这时他发现
与
之间有一定的数量关系,请你写出
与
的数量关系__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程
(1)3x﹣7+4x=6x﹣2
(2)4﹣3(2﹣x)=5x
(3)2(x+3)﹣5(1﹣x)=3(x﹣1)
(4)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155; B组:155≤x<160; C组:160≤x<165; D组165≤x<170;E组:x≥170)

根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在组,中位数在组.
(2)样本中,女生的身高在E组的人数有人.
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:小华遇到这样一个问题:
已知:如图1,在△ABC中,三边的长分别为AB=
,AC=
,BC=2,求∠A的正切值.
小华是这样解决问题的:
如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.
(1)如图2,△DEF中与∠A相等的角为 , ∠A的正切值为 .
(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2
,LN=2
,求∠N的正切值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司装修需用A型板材240块,B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)

裁法一
裁法二
裁法三
A型板材块数
1
2
0
B型板材块数
2
m
n
(1)上表中,m= , n=;
(2)若裁完剩余的部分可以拼接成A型或B型板材使用,则至少需要几张标准板材?
(3)若裁完剩余的部分不能拼接成A型或B型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种剪裁方案(要求:①其中一种方案三种剪裁方法都使用,另一种方案只用到两种剪裁方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).
相关试题