【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:
![]()
![]()
(1)若A组的频数比B组小24,求频数分布直方图中的
、
的值;
(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优异的学生有多少名?
参考答案:
【答案】(1)a=16 b=40;(2)126°,图详见解析;(3)940名
【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;
(2)利用360°乘以对应的比例即可求解;
(3)利用总人数乘以对应的百分比即可求解.
(1)学生总数是24÷(20%-8%)=200(人),
则a=200×8%=16,b=200×20%=40;
(2)n=360×
=126°.
C组的人数是:200×25%=50.如图所示:
;
(3)样本D、E两组的百分数的和为1-25%-20%-8%=47%,
∴2000×47%=940(名)
答:估计成绩优秀的学生有940名.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.

(1)求这座山的高度(小明的身高忽略不计);
(2)求索道AC的长(结果精确到0.1m).
(参考数据:tan31°≈
,sin31°≈
,tan39°≈
,sin39°≈
) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,已知∠1=∠2,∠C=∠D

(1)判断BD与CE是否平行,并说明理由;(2)说明∠A=∠F的理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.

(1)求证:△BOC≌△EOD;
(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在ABCD中,点E、F分别在AD、BC上,EF与BD相交于点O,AE=CF.
(1)求证:OE=OF;
(2)连接BE、DF,若BD平分∠EBF,试判断四边形EBFD的形状,并给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x(元)
3000
3200
3500
4000
y(辆)
100
96
90
80
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求按照表格呈现的规律,每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数(辆)
未租出的车辆数(辆)
租出每辆车的月收益(元)
所有未租出的车辆每月的维护费(元)
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请说明理由.
相关试题