【题目】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:
①abc<0;②b>2a;③a+b+c=0;④8a+c>0;⑤ax2+bx+c=0的两根分别为﹣3和1.
其中正确的命题有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
参考答案:
【答案】C
【解析】解:①∵开口向上,∴a>0,对称轴在y轴的左侧,b>0,抛物线与y轴交于负半轴,c<0,∴abc<0,∴①正确;
②
=﹣1,b=2a,②错误;
③当x=1时,y=0,∴a+b+c=0,③正确;
④当x=2时,y>0,∴4a+2b+c>0,∴8a+c>0,④正确;
⑤∵对称轴为x=﹣1,抛物线与x轴的交点坐标分别为(﹣3,0),(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,⑤正确.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;
(2)求出售价x的范围;
(3)商场每月销售这种空气净化器所获得的利润为w(元),写出w关于x的关系?当售价x(元/台)定为多少时利润最大,最大是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.
(1)求证:直线CD是⊙O的切线;
(2)如果D点是BC的中点,⊙O的半径为 3cm,求
的长度.(结果保留π)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,点D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF; ②当AB=4,AD=
时,求线段BG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)画出△ABC关于原点O成中心对称的△A1B1C1;
(2)写出△A1B1C1的顶点坐标;
(3)求出△A1B1C1的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的推理.
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.

完成推理过程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .

相关试题