【题目】完成下面的推理.
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.
![]()
完成推理过程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
参考答案:
【答案】见解析.
【解析】
理解题意,分析每一步的推导根据.由角的平分线定义得∠ABD=2∠α,∠BDC=2∠β,
根据等量代换得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),由已知∠α+∠β=90°,再由等量代换得∠ABD+∠BDC=180°,最后根据“同旁内角互补两直线平行”得AB∥CD.
BE平分∠ABD(已知),
∴∠ABD=2∠α(角平分线的定义).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (角平分线的定义)
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(等量代换).
∴AB∥CD(同旁内角互补两直线平行).
故答案为:角平分线的定义,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2
B.a=
C.a=1
D.a=
-
科目: 来源: 题型:
查看答案和解析>>【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,是真命题的是( )
①面积相等的两个直角三角形全等;
②对角线互相垂直的四边形是正方形;
③将抛物线
向左平移4个单位,再向上平移1个单位可得到抛物线
;④两圆的半径R、r分别是方程x2-3x+2=0 的两根,且圆心距d=3, 则两圆外切.
A. ① B. ② C. ③ D. ④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某航空公司经营中有A、B、C、D这四个城市之间的客运业务.它的部分机票价格如下:A﹣B为2000元;A﹣C为1600元;A﹣D为2500元;B﹣C为1200元;C﹣D为900元.现在已知这家公司所规定的机票价格与往返城市间的直线距离成正比,则B﹣D的机票价格( )
A. 1400元 B. 1500元 C. 1600元 D. 1700元
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大
相关试题