【题目】如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
![]()
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
(1)如图①,求证:∠BEC=∠ABE+∠DCE;
(2)如图②,求证:∠BE2C=
∠BEC;
(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接写出结论).
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)∠BEC等于2nα度.
【解析】试题(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;
(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠CE1B=∠ABE1+∠DCE1=
∠ABE+
∠DCE=
∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2=
∠ABE1+
∠DCE1=
∠CE1B=
∠BEC;
(3)根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C=
∠BEC;…据此得到规律∠En=
∠BEC,最后求得∠BEC的度数.
试题解析:解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;
(2)如图2.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=
∠ABE+
∠DCE=
∠BEC;
∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=
∠ABE1+
∠DCE1=
∠CE1B=
∠BEC;
(3)如图2.∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=
∠ABE2+
∠DCE2=
∠CE2B=
∠BEC;
…
以此类推,∠En=
∠BEC,∴当∠En=α度时,∠BEC等于2nα度.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.

(1)求CD的长及∠1的度数;
(2)若点G恰好在BC上,求此时x的值;
(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:

根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m=;
(2)该市支持选项C的司机大约有多少人?
(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】图中的虚线网格是等边三角形网格,它的每一个小三角形都是边长为1的等边三角形.
(1)边长为1的等边三角形的高=____;
(2)图①中的ABCD的对角线AC的长=____;
(3)图②中的四边形EFGH的面积=____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分球投篮测试,每人每次投10个球,图记录的是这两名同学5次投篮所投中的个数.

(1)请你根据图中的数据,填写下表;
姓名
平均数
众数
方差
王亮
7
李刚
7
2.8
(2)你认为谁的成绩比较稳定,为什么?
(3)若你是教练,你打算选谁?简要说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知函数y=-
x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点E,点E的横坐标为3.(1)求点A的坐标;
(2)在x轴上有一点F(a,0),过点F作x轴的垂线,分别交函数y=-
x+b和y=x的图象于点C、D,若以点B、O、C、D为顶点的四边形为平行四边形,求a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.

(1)求证:△BEF∽△DBC.;
(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)
相关试题