【题目】问题与探索
问题情境:课堂上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图(1),将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现:
(1)将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图(2)所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是 . ![]()
(2)创新小组将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图(3)所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形,请证明这个结论.![]()
参考答案:
【答案】
(1)菱形
(2)
解:如图3中,过点A作AE⊥C′C于点E,
![]()
由旋转的性质,得AC′=AC,
∴∠CAE=∠C′AE=
α=∠ABC,∠AEC=90°,
∵BA=BC,
∴∠BCA=∠BAC
∴∠CAE=∠BCA,
∴AE∥BC.
同理,AE∥DC′,
∴BC∥DC′,
又∵BC=DC′,
∴四边形BCC′D是平行四边形,
又∵AE∥BC,∠AEC=90°,
∴∠BCC′=1800﹣900=900
∴四边形BCC′D是矩形
【解析】解:(1)结论:菱形.
理由:如图2中,![]()
由题意∵AB=BC,
∴∠BAC=∠BCA=∠CAC′=∠AC′D
∴AC′∥EC,
∵∠CAC′=∠AC′D,
∴AC∥EC′,
∴四边形ACEC′是平行四边形,
∵AC=AC′,
∴四边形ACEC′是菱形.
(1)结论:菱形.首先证明四边形ACEC′是平行四边形,再由AC=AC′即可证明结论.(2)如图3中,过点A作AE⊥C′C于点E,首先证明DC′∥CB,DC′=BC,推出四边形BCC′D是平行四边形,再证明∠BCC′=900即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )

A.45°
B.50°
C.60°
D.75° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.

(1)求这条抛物线的解析式;
(2)连接AB,BC,CD,DA,求四边形ABCD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于点D,点M,N分别是BD和BC边上的动点,则MN+MC的最小值是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.
(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,

(1)如图1,若∠ACD=60°,则∠AFB= ;如图2,若∠ACD=90°,则∠AFB= ;如图3,若∠ACD=120°,则∠AFB= ;
(2)如图4,若∠ACD=α,则∠AFB= (用含α的式子表示);
(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.
相关试题