【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D. ![]()
(1)求这条抛物线的解析式;
(2)连接AB,BC,CD,DA,求四边形ABCD的面积.
参考答案:
【答案】
(1)解:∵抛物线y=ax2+bx﹣5(a≠0)与y轴交于点C,
∴点C的坐标为(0,﹣5),
∴OC=5,
∵OC=5OB,
∴OB=1.
又∵点B在x轴的负半轴上,
∴点B的坐标为(﹣1,0).
将A(4,﹣5),B(﹣1,0)代入y=ax2+bx﹣5中,
得:
,解得:
,
∴这条抛物线的解析式是y=x2﹣4x﹣5
(2)解:∵y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴顶点D的坐标为(2,﹣9),
连接AC,如图所示.
∵A(4,﹣5),C(0,﹣5),
∴AC∥x轴,
∴
,
,
∴四边形ABCD的面积=10+8=18.
![]()
【解析】(1)由二次函数图象上点的作伴特征可求出点C的坐标,结合OC=5OB即可得出点B的坐标,根据点A、B的坐标利用待定系数法即可求出二次函数解析式;(2)将二次函数解析式变形为顶点式,由此即可得出点D的坐标,连接AC,将四边形ABCD分成两个三角形,再根据三角形的面积求出△ACB和△ACD的面积,将其相加即可得出结论.
【考点精析】利用抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,D、E分别为AB、AC上的点,∠BDE、∠CED的平分线分别交BC于点F、G,EG∥AB.若∠BGE=110°,则∠BDF的度数为___________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )

A.45°
B.50°
C.60°
D.75° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题与探索
问题情境:课堂上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图(1),将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现:
(1)将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图(2)所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是 .
(2)创新小组将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图(3)所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形,请证明这个结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于点D,点M,N分别是BD和BC边上的动点,则MN+MC的最小值是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.
(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

相关试题