【题目】如图,△ABC和△CDE都是等边三角形,且∠EBD=72°,则∠AEB的度数是______.
![]()
参考答案:
【答案】132°
【解析】
由已知条件推导出△ACE≌△BCD,从而∠DBC=∠CAE,再通过角之间的转化,利用三角形内角和定理能求出∠AEB的度数.
解:∵△ABC和△CDE都是等边三角形,且∠EBD=72°,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,
∴∠BCD=∠ACE,
∴△ACE≌△BCD,
∴∠DBC=∠CAE,
∴72°
∠EBC=60°
∠BAE,
∴72°
(60°
∠ABE)=60°
∠BAE,
∴∠ABE+∠BAE=48°,
∴∠AEB=180°
(∠ABE+∠BAE)=180°
48°=132°.
故答案为:132°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

(1)试说明DF是⊙O的切线;
(2)若AC=3AE,求tanC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,D为BC边上一点.
(1)如图①,在Rt△ABC中,∠C=90°,将△ABC沿着AD折叠,点C落在AB边上.请用直尺和圆规作出点D(不写作法,保留作图痕迹);
(2)如图②,将△ABC沿着过点D的直线折叠,点C落在AB边上的E处.
①若DE⊥AB,垂足为E,请用直尺和圆规作出点D(不写作法,保留作图痕迹);
②若AB=
,BC=3,∠B=45°,求CD的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC于点F.
(1)求证:∠ADE=∠EFC;
(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是某市的电价标准(每月)
阶梯
电量x(单位:度)
电费价格(单位:元/度)
一档
0<x≤180
a
二档
180<x≤400
b
三档
x>400
0.95
(1)已知陈女士家三月份用电256度,缴纳电费154.56元,四月份用电318度,缴纳电费195.48元请你根据以上数据,求出表格中的a,b的值.
(2)5月份开始用电增多,陈女士缴纳电费280元,求陈女士家5月份的用电量.
相关试题