【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
![]()
(1)试说明DF是⊙O的切线;
(2)若AC=3AE,求tanC.
参考答案:
【答案】(1)详见解析;(2)![]()
【解析】试题分析:(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;
(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2
AE,CE=4AE,然后在RT△BEC中,即可求得tanC的值.
试题解析:(1)连接OD,
![]()
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)连接BE,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE=
,
在RT△BEC中,tanC=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F,
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2,若∠ABM=
∠ABF,∠CDM=
∠CDF,试写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,∠E=m°,请直接用含有n,m°的代数式表示出∠M.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某天在南印度洋海域有两艘自西向东航行的搜救船A、B,B船在A船的正东方向,且两船保持40海里的距离.某一时刻两船同时测得在A的东北方向,B的北偏东15°方向有一疑似物C,求此时疑似物C与搜救船A、B的距离各是多少?(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,D为BC边上一点.
(1)如图①,在Rt△ABC中,∠C=90°,将△ABC沿着AD折叠,点C落在AB边上.请用直尺和圆规作出点D(不写作法,保留作图痕迹);
(2)如图②,将△ABC沿着过点D的直线折叠,点C落在AB边上的E处.
①若DE⊥AB,垂足为E,请用直尺和圆规作出点D(不写作法,保留作图痕迹);
②若AB=
,BC=3,∠B=45°,求CD的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△CDE都是等边三角形,且∠EBD=72°,则∠AEB的度数是______.

相关试题