【题目】如图,直线y=2x+6交x轴于A,交y轴于B.
![]()
(1)直接写出A( , ),B( , );
(2)如图1,点E为直线y=x+2上一点,点F为直线y=
x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标
(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.
参考答案:
【答案】(1)﹣3,0,0,6;(2)E(5,7),F(2,1)或E(11,13),F(﹣14,﹣7);(3)
.
【解析】
(1)利用待定系数法即可解决问题;
(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;
(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;
解:(1)对于直线y=2x+6,令x=0,得到y=6,
令y=0,得到x=﹣3,
∴A(﹣3,0),B(0,6),
故答案为﹣3,0,0,6;
(2)∵A,B,E,F为顶点的四边形是平行四边形,
∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),
把F(m+3,m+8)代入y=
x,得到m+8=
(m+3),解得m=﹣13,
∴E(﹣13,﹣11),F(﹣10,﹣5),
把F(m﹣3,m﹣4)代入y=
x中,m﹣4=
(m﹣3),解得m=5,
∴E(5,7),F(2,1),
当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),
把F(﹣m﹣3,4﹣m)代入y=
x中,4﹣m=
(﹣m﹣3),解得m=11,
∴E(11,13),F(﹣14,﹣7).
(3)∵C(m,n)在直线y=2x+6上,
∴n=2m+6,
∴C(m,2m+6),
∵D(﹣7m,0),CM=MD,
∴M(﹣3m,m+3),
令x=﹣3m,y=m+3,
∴y=﹣
x+3,
当点C与A重合时,m=﹣3,可得M(9,0),
当点C与B重合时,m=0,可得M(0,3),
∴点C移动过程中点M的运动路径长为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某移动通信公司推出了如下两种移动电话计费方式,
月使用费/元
主叫限定时间/分钟
主叫超时费(元/分钟)
方式一
30
600
0.20
方式二
50
600
0.25
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)
(1)请根据题意完成如表的填空;
月主叫时间500分钟
月主叫时间800分钟
方式一收费/元
130
方式二收费/元
50
(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E,F分别在边AD,CD上,

(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3
;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则
的值为 (直接写出结果). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(-2,2),第四次点A3向右跳动至点A4(3,2),…,依此规律跳动下去,则点A2 019与点A2 020之间的距离是( )

A.2021B.2020C.2019D.2 018
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为( )

A. 140°B. 120°C. 100°D. 70°
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明:
如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.

证明:∵∠C=∠COA,∠D=∠BOD,
又∵∠COA=∠BOD( ),
∴∠C= ( ).
∴AC∥BD( ).
∴∠A= ( ).
∵EF∥AB,
∴∠F= ( ).
∴∠A=∠F( ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_____秒时,△BCA与点P、N、B为顶点的三角形全等.

相关试题