【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
![]()
(1)在扇统计图中,表示“QQ”的扇形圆心角的度数为_____;根据这次统计数据了解到最受学生欢迎的沟通方式是______.
(2)将条形统计图补充完整;
(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
参考答案:
【答案】(1)108°,微信;(2)见解析;(3)![]()
【解析】
(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数,根据总人数及所占百分比即可求出使用短信的人数,总人数减去除微信之外的四种方式的人数即可得到使用微信的人数.
(2)根据短信与微信的人数即可补全条形统计图.
(3)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人
喜欢用QQ沟通所占比例为:
,
∴“QQ”的扇形圆心角的度数为:360°×
=108°,
喜欢用短信的人数为:100×5%=5(人)
喜欢用微信的人数为:100205305=40(人),
∴最受学生欢迎的沟通方式是:微信,
故答案为:108°,微信;
(2)补全条形图如下:
![]()
(3)列出树状图,如图所示
![]()
所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,
甲、乙两名同学恰好选中同一种沟通方式的概率为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A,B 两点,与反比例函数
的图象交于点 C,且 AB=AC,则 k 的值为( )
A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线
(n 为常数)与扇形 OAB 的边界总有两个公共点则 n 的取值范围是( )
A.n>-4B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图像与反比例函数
(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD 为⊙O 的直径,弦 AB 交 CD 于点E,连接 BD、OB.

(1)求证:△AEC∽△DEB;
(2)若 CD⊥AB,AB=6,DE=1,求⊙O 的半径长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题呈现:
如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan ∠CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠ CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB 就变换到 Rt△ABE 中.问题解决:

(1)直接写出图 1 中 tan CPB 的值为______;
(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cos CPB 的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地有一个直径为 14 米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心 2 米处达到最高,高度为5米 ,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示以水平方向为 x 轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高 1.8 米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估规划,政府决定对喷水设施改造成标志性建筑,做出如下设计改进;在喷出水柱的形状不变的前提下,把水池的直径扩大到 42 米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
相关试题