【题目】阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为
、
、
,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.
请回答:
![]()
![]()
(1)①图1中△ABC的面积为________;
②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为
、2
、
的格点△DEF.
参考答案:
【答案】(1)①
,②见解析; (2)见解析.
【解析】
(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;
(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.
(1)① 如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=
;
![]()
②如图所示,线段MN即为所求:
![]()
(2)如图5所示,△DEF即为所求.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,两个形状、大小完全相同的含有30゜和60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.

(1)试说明:∠DPC=90゜;
(2)如图2,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;
(3)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动),以下两个结论:①
为定值;②∠BPN+∠CPD为定值,请选出正确的结论,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.
(1)证明:四边形OCED为菱形;
(2)若AC=4,求四边形CODE的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2
,sin∠AOC=
,反比例函数y=
的图象经过点C以及边AB的中点D. 
(1)求这个反比例函数的解析式;
(2)四边形OABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a,b,c分别满足:-(a-4)2≥0,c=
+
+8.

(1)直线y=bx+c的解析式为________;正方形OABC的对角线的交点D的坐标为________;
(2)若正方形OABC沿x轴负方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,在备用图中画图分析,直接写出
的值.
相关试题