【题目】如图,图中所有的三角形都是直角三角形,四边形都是正方形,已知正方形A,B,C,D的边长分别是12,16,9,12,则最大正方形E的面积是_______.
![]()
参考答案:
【答案】625
【解析】
观察图形可知,M的面积是直角三角形斜边的平方,而直角三角形斜边的平方即为A的面积和B的面积之和,因此正方形A、B的面积和为正方形M的面积;同理,正方形C、D的面积和为正方形N的面积,正方形M、N的面积和为正方形E的面积,据此联系勾股定理即可求出E的面积.
根据勾股定理的几何意义可知,正方形A、B的面积和为正方形M的面积,
所以正方形M的面积为:122+162=400,
同理可得正方形N的面积为:92+122=225,
正方形E的面积为:400+225=625.
故答案为:625.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC中,AC=BC,∠A=30°,点D在AB边上,且∠ADC=45°.
(1)求∠BCD的度数;
(2)将图1中的△BCD绕点B顺时针旋转得到△BC′D′,当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.
①求∠C′CB的度数;
②求证:△C′BD′≌△CAE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:


点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=
=∣a-b∣;如图3,当点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=
=∣a-b∣;如图4,当点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣=
=∣a-b∣.回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是______.
(2)数轴上若点A表示的数是x,点B表示的数是-2,则点A和B之间的距离是_____,若∣AB∣=2,那么x为______.
(3)当x是_____时,代数式
.(4)若点A表示的数是-1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒
个单位长度,求运动几秒后,点P与点Q之间的距离为5个单位长度 ?(请写出必要的求解过程) -
科目: 来源: 题型:
查看答案和解析>>【题目】小林同学积极参加体育锻炼,天天坚持跑步,他每天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小明跑步情况的记录(单位:m):
星期
一
二
三
四
五
六
日
跑步情况(m)
+420
+460
-100
-210
-330
+200
-240
(1)星期三小林跑了_____米
(2)小林在跑得最少的一天跑了______米?跑得最多的一天比最少的一天多跑了_____米?
(3)若小林跑步的平均速度为240米/分,求本周内小明用于跑步的时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?
(2)汽车在中途停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某旅行社推出一条成本价位500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.
(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;
(2)求经营这条旅游线路每月所需要的最低成本;
(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?
【答案】(1)取值范围为1100元/人~1200元/人之间;(2)50000;(3)x=900时,w最大=160000
【解析】试题分析:(1)根据题意列不等式求解可;
(2)根据报价减去成本可得到函数的解析式,根据一次函数的图像求解即可;
(3)根据利润等于人次乘以价格即可得到函数的解析式,然后根据二次函数的最值求解即可.
试题解析:(1)∵由题意得
时,即
, ∴解得
即要将该旅游线路每月游客人数控制在200人以内,该旅游线路报价的取值范围为1100元/人~1200元/人之间;
(2)
,
,∴
∵
,∴当
时,z最低,即
;(3)利润
当
时,
. 【题型】解答题
【结束】
23【题目】已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连接DF.
(1)求证:CD=CF;
(2)连接DF,交AC于点G,求证:△DGC∽△ADC;
(3)若点H为线段DG上一点,连接AH,若∠ADC=2∠HAG,AD=3,DC=2,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列两个等式:3+2=3×2-1,4+
=4×
-1,给出定义如下:我们称使等式a+b=ab-1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,
)都是“椒江有理数对”.(1)数对(-2,1),(5,
)中是“椒江有理数对”的是 ;(2)若(a,3)是“椒江有理数对”,求a的值;
(3)若(m,n)是“椒江有理数对”,则(-n,-m) “椒江有理数对”(填“是”、“不是”或“不确定”).
(4)请再写出一对符合条件的“椒江有理数对” (注意:不能与题目中已有的“椒江有理数对”重复)
相关试题