【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是( ) ![]()
A.4个
B.3个
C.2个
D.1个
参考答案:
【答案】B
【解析】解:∵抛物线开口向下,
∴a<0,
∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,
∴b>0,c>0,故①错误;
由图象知,当x=1时,y<0,即a+b+c<0,故②正确,
令方程ax2+bx+c=0的两根为x1、x2 ,
由对称轴x>0,可知
>0,即x1+x2>0,故③正确;
由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,
∴当x=﹣1时,y=a﹣b+c<0,故④正确.
故选:B.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】y=
x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )
A.没有实数根
B.有一个实数根
C.有两个不相等的实数根
D.有两个相等的实数根 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:
(1)若∠A=60°,求∠BOC的度数;
(2)若∠A=100°,则∠BOC的度数是多少?
(3)若∠A=120°,则∠BOC的度数又是多少?
(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出个这样的停车位.(取
=1.4,结果保留整数) 
相关试题