【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底部G点为BC的中点,求矮建筑物的高CD.![]()
参考答案:
【答案】
【解析】
解:过点D作DF⊥AF于点F,
∵点G是BC中点,EG∥AB,
∴EG是△ABC的中位线,
∴AB=2EG=30米,
在Rt△ABC中,∵∠CAB=30°,
∴BC=ABtan∠BAC=30×
=10
米.
在Rt△AFD中,∵AF=BC=10
米,
∴FD=AFtanβ=10
×
=10米,
∴CD=AB﹣FD=30﹣10=20米.![]()
【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某农户承包种植某水果,今年投资30 000元,收获水果20 000千克.此水果在市场上的售价为每千克
元,卖给到果园收购的商贩每千克
元(
.若农户将水果拉到市场上出售,则平均每天可售1000千克,需雇佣2人,每人每天付工资150元,运输及其他税费平均每天200元.(1)分别用含
的代数式表示两种出售方式的纯收入.(2)若
,且两种出售方式在相同的时间内售完全部水果.请通过计算说明哪种出售方式较好.(3)该农户总结今年的种植及销售的经验,加强果园管理,力争明年纯收入达到100000元,则与(2)中今年较好的出售方式的纯收入相比,明年的纯收入的增长率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.
(1)请用直尺和圆规作出C处的位置;

(2)求我国海监船行驶的航程BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.

(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面积为8
,求AC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】我们用“”表示一种新运算符号,观察下列式子,解决问题:
25=2×2+4=8
34=2×3+3=9
3(﹣1)=2×3﹣2=4
﹣3(﹣5)=2×(﹣3)﹣6=﹣12
……
(1)请你用含a,b的式子表示这个规律:求ab的值;
(2)求(﹣
6)(﹣4)的值;(3)如果x(﹣3)=3x,求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于点E,PF⊥AC于点F,下列结论:
①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2.
其中结论正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
相关试题