【题目】如图所示,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于点E,PF⊥AC于点F,下列结论:
①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2.
其中结论正确的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
参考答案:
【答案】C
【解析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得DC=DB,从而判断①正确;没有条件说明∠C的度数,判断出②错误;连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB,判断出③正确;过点B作BG∥AC交FP的延长线于G,根据两直线平行,内错角相等可得∠C=∠PBG,∠G=∠CFP=90°,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AF=BG,根据然后利用“角角边”证明△BPE和△BPG全等,根据全等三角形对应边相等可得BG=BE,再利用勾股定理列式求解即可判断④正确.
在 △BCD 中, ∠ADB=∠C+∠DBC ,
∵∠ADB=2∠C ,
∴∠C=∠DBC ,
∴DC=DB ,
∴△DBC 是等腰三角形,故①正确;
无法说明 ∠C=30° ,故②错误;
连接 PD ,则 S△BCD=
BDPE+
DCPF=
DCAB,
∴PE+PF=AB ,故③正确;
![]()
过点 B 作 BG ∥ AC 交 FP 的延长线于 G ,
则 ∠C=∠PBG , ∠G=∠CFP=90° ,
∴∠PBG=∠DBC ,四边形 ABGF 是矩形,
∴AF=BG ,
在 △BPE 和 △BPG 中,
,
∴△BPE ≌ △BPG(AAS) ,
∴BG=BE ,
∴AF=BE ,
在 Rt△PBE 中, PE +BE =BP ,
即 PE +AF =BP ,故④正确。
综上所述,正确的结论有①③④。
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.

(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面积为8
,求AC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底部G点为BC的中点,求矮建筑物的高CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们用“”表示一种新运算符号,观察下列式子,解决问题:
25=2×2+4=8
34=2×3+3=9
3(﹣1)=2×3﹣2=4
﹣3(﹣5)=2×(﹣3)﹣6=﹣12
……
(1)请你用含a,b的式子表示这个规律:求ab的值;
(2)求(﹣
6)(﹣4)的值;(3)如果x(﹣3)=3x,求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,
),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.

(1)经过多长时间,点P位于点Q左侧2个单位长度?
(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.
相关试题