【题目】(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:① DC = BC; ②AD+AB=AC.请你证明结论②;
![]()
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
参考答案:
【答案】(1)证明见解析(2) 成立,证明见解析
【解析】(1)证明: ∵∠MAN=120°,AC平分∠MAN.
∴∠DAC = ∠BAC =600
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD,Rt△ACB中,∠DCA=30°
∠BCA=30°
∴AC=2AD, AC = 2AB,
∴2AD=2AB
∴AD=AB
∴AD+AB=AC.
(2)解:(1)中的结论① DC = BC; ②AD+AB=AC都成立,
理由一:如图2,在AN上截取AE=AC,连结CE,
∵∠BAC =60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC =60°,
∵∠DAC =60°,∴∠DAC =∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC =∠EBC, ∴
,
∴DC = BC,DA = BE, …
∴AD+AB=AB+BE=AE, ∴AD+AB=AC.
或者理由二:如图,过C作CE⊥AN,CF⊥AM于E、F
![]()
证明△BCE≌△DCF,得到
DC=BC,BE=DF
即AC=AE+AF=AB+AD亦可
得分参照理由一给分
(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.
(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,点A的坐标为(﹣4,3),点B的坐标为(﹣3,1),BC=2,BC∥x轴.
(1)画出△ABC关于y轴对称的图形△A1B1C1;并写出A1,B1,C1的坐标;
(2)求以点A、B、B1、A1为顶点的四边形的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC为等边三角形,点E、F分别在BC和AB上,且CE=BF,AE与CF相交于点H.
(1)求证:△ACE≌△CBF;
(2)求∠CHE的度数;
(3)如图2,在图1上以AC为边长再作等边△ACD,将HE延长至G使得HG=CH,连接HD与CG,求证:HD=AH+CH
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表是中国电信两种“
套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)月基本费/元
主叫通话/分钟
上网流量/MB
接听
主叫超时(元/分钟)
超出流量(元/MB)
套餐1
49
200
500
免费
0.20
0.3
套餐2
69
250
600
免费
0.15
0.2
(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需 元,按套餐2计费需 元;
若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了 MB流量;
(2)若上网流量为540MB,是否存在某主叫通话时间
(分钟),按套餐1和套餐2的计费相等?若存在,请求出
的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,点
在线段
上运动(
不与
、
重合),连接
,作
,
交线段
于
.

(1)当
时,
= ,
= ;点
从
向
运动时,
逐渐 (填“增大”或“减小”);(2)当
等于多少时,
,请说明理由;(3)在点
的运动过程中,
的形状可以是等腰三角形吗?若可以,请直接写出
的度数.若不可以,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,
≈1.73)
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)12-(-18)+(-7)-15
(2)(-2.7)+(+1
)-(-6.7)+(-1.6)(3)20+(-14)-(-18)-13
(4)81÷|-2
|×
(5)
(6)-14-(1-0.5×
)×(2-23)
相关试题