【题目】如图,点E是等腰三角形纸片ABC外一点,∠ABC=90°,连接AE,点F是线段AE(不与点A,E重合)上一点,在△EBF中,EB=FB,∠EBF=90°,连接CE,CF
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)△CEF是直角三角形.理由见解析.
【解析】
(1)由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;
(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.
(1)证明:∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC-∠CBF=∠EBF-∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有
,
∴△ABF≌△CBE(SAS).
(2)△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°-∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB-∠FEB=135°-45°=90°,
∴△CEF是直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
﹣4
﹣tan60°+|
﹣2|. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,△ABC中,∠ACB=90°,AC=3
,BC=3,如图②,将△ABC沿一条直线折叠,使得点A与点C重合(1)在图①中画出折痕所在的直线l,设直线l与AB,AC分别相交于点D,E(尺规作图,不写作法,保留作图痕迹)
(2)如图②,求△CDB的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出A1点的坐标及sin∠B1A1C1的值;
以原点O为位似中心,位似比为1:2,在y轴的左侧,画出 将△ABC放大后的△A2B2C2 , 并写出A2点的坐标;
(2)若点D(a,b)在线段AB上,直接写出经过(2)的变化后点D的对应点D2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在矩形ABCD中,E是BC上一点,AF⊥DE于点F.

(1)求证:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】一辆车长为4米的小轿车和一辆车长为20米的大货车,在长为1200米隧道的两个入口同时开始相向而行,小轿车的速度是大货车速度的3倍,大货车速度为10米/秒.
(1)求两车相遇的时间;
(2)求两车从相遇到完全离开所需的时间;
(3)当小轿车车头和大货车车头相遇后,求小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的一元二次方程4x2+4(a﹣1)x+a2﹣a﹣2=0没有实数根.
(1)求实数a的取值范围;
(2)化简:
﹣
.
相关试题