【题目】如图,在平面直角坐标系中,AB//EG//x轴,BC//DE//HG//AP//y轴,点D、C、P、H在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),把一条长为2019个单位长度且没有弹性的细线(粗细忽略不计)的一端固定在点A处,并按A-B-C-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )
![]()
A.(1,2)B.(-1,2)C.(-1,-2)D.(1,1)
参考答案:
【答案】D
【解析】
先求出“凸”形ABCDEFGHP的周长为20,得到2019÷20的余数,进而可得答案.
解:∵A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),
∴“凸”形ABCDEFGHP的周长为20,
∵2019÷20的余数为19,
∴细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
分别交y轴、x 轴于A、B两点,抛物线
过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t 取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.
①如图1,若∠BCA=90°,∠α=90°,则BE CF;
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:
-
科目: 来源: 题型:
查看答案和解析>>【题目】以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.

(1)说明BD=CE;
(2)延长BD,交CE于点F,求∠BFC的度数;
(3)若如图2放置,上面的结论还成立吗?请简单说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:
(1)将两幅不完整的图补充完整;
(2)本次参加抽样调查的居民有多少人?
(3)若居民区有8000人,请估计爱吃D粽的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的解题过程(在下面的横线上,填写相应的结论或推理的依据):
已知:△ABC,∠A、∠B、∠C之和为多少?为什么?

解:∠A+∠B+∠C=180°
理由:过C作CD//AB,并延长BC到E
∵CD//________(已作)
∴∠________=∠ACD(两直线平行,内错角相等)
且∠B=∠___________(________________)
而∠DCE+∠ACD+∠ACB=_________°
∴∠________+∠B+∠ACB=180°(__________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了庆祝校园艺术节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花一共需13元,2盆A种花和1盆B种花一共需11元.
(1)求1盆A种花和1盒B种花的售价各是多少元?
(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?
相关试题