【题目】如图,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)△DBC是等腰三角形,证明见解析.
【解析】
(1)利用已知条件证明△DAB≌△EBC(ASA),根据全等三角形的对应边相等即可得到AD=BE;
(2)分别证明AD=AE,CE=CE,根据线段垂直平分线的逆定理即可解答;
(3)△DBC是等腰三角形,由△DAB≌△EBC,得到DB=EC,又有△AEC≌△ADC,得到EC=DC,所以DB=DC,即可解答.
解:(1)∵∠ABC=90°,
∴∠ABD+∠DBC=90°,
∵CE⊥BD,
∴∠BCE+∠DBC=90°,
∴∠ABD=∠BCE,
∵AD∥BC,
∴∠DAB=∠EBC,
在△DAB和△EBC中,
,
∴△DAB≌△EBC(ASA)
∴AD=BE
(2)∵E是AB的中点,即AE=BE,
∵BE=AD,
∴AE=AD,
∴点A在ED的垂直平分线上(到角两边相等的点在角的平分线上),
∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠BAD=90°,
∴∠BAC=∠DAC=45°,
在△EAC和△DAC中,
,
∴△EAC≌△DAC(SAS)
∴CE=CD,
∴点C在ED的垂直平分线上
∴AC是线段ED的垂直平分线.
(3)△DBC是等腰三角形
∵△DAB≌△EBC,
∴DB=EC
∵△AEC≌△ADC,
∴EC=DC,
∴DB=DC,
∴△DBC是等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

(1)在如图所示的网格平面内作出平面直角坐标系;
(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;
(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了出行方便,现在很多家庭都购买了小汽车.又由于能源紧张和环境保护,石油的市场价格常常波动.为了在价格的波动中尽可能减少损失,常常有两种加油方案.
方案一:每次加50元的油.方案二:每次加50升的油.
请同学们以2次加油为例(第一次油价为a元/升,第二次油价为b元/升,a>0,b>0且a≠b),计算这两种方案中,哪种加油方案更实惠便宜(平均单价小的便宜)?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价现在的售价为每箱36元,每月可销售60箱市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围;
(2)市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依此类推.
(1)填写下表:
层 数
1
2
3
4
5
…
该层对应的点数
1
6
…
(2)写出第n层所对应的点数(n≥2).
(3)如果某一层共96个点,你知道它是第几层吗?
(4)有没有一层,它的点数为100个?
(5)写出n层的六边形点阵的总点数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明同学在学习多项式乘以多项式时发现:(
x+6)(2x+3)(5x﹣4)的结果是一个多项式,并且最高次项为:
x2x5x=5x3,常数项为:6×3×(﹣4)=﹣72,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×3×(﹣4)+2×(﹣4)×6+5×6×3=36,即一次项为36x.认真领会小明同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为 .
(2)(
x+6)(2x+3)(5x﹣4)所得多项式的二次项系数为 .(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所所得多项式的一次项系数为0,则a= .
(4)若(x+1)2018=a0x2018+a1x2017+a2x2016+a3x2015…+a2017x++a2018,则a2017= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(十九),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?

(A) 5 (B) 6 (C) 7 (D) 10
相关试题