【题目】如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l4、l2上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为cm2 . ![]()
参考答案:
【答案】20
【解析】解:作EF⊥l2 , 交l1于E点,交l4于F点. ![]()
∵l1∥l2∥l3∥l4 , EF⊥l2 ,
∴EF⊥l1 , EF⊥l4 ,
即∠AED=∠DFC=90°.
∵四边形ABCD为正方形,
∴∠ADC=90°.
∴∠ADE+∠CDF=90°.
又∵∠ADE+∠DAE=90°,
∴∠CDF=∠DAE,
在△ADE与△DCF中,
,
∴△ADE≌△DCF,
∴CF=DE=2.
∵DF=4,
∴CD2=22+42=20,
即正方形ABCD的面积为20cm2 .
所以答案是:20.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC 中,AB=AC,∠CAB=50°.在△ABC 的外侧作直线 AP,作 点 C 关于直线 AP 的对称点 D,连接 BD,CD,AD,其中 BD 交直线 AP 于点 E.
(1)如图 1,与 AD 相等的线段是_____;
(2)如图 2,若∠PAC=20°,求∠BDC 的度数;
(3)如图 3,当 65°<∠PAC<130°时,作 AF⊥CE 于点 F,若 EF=1,BE=5,求 DE 的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y=
图象恰好过点D,则k的值为( ) 
A.6
B.﹣6
C.9
D.﹣9 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD被直线EF所截,交点分别为G,H, ∠CHG=∠DHG=
∠AGE.(1)CD与EF有怎样的位置关系?请说明理由.
(2)求∠CHG的同位角、内错角、同旁内角的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在 Rt△ABC 中,∠A=30°,∠ACB=90°,点 D 为 AC 中点, 点 E 为 AB 边上一动点,AE=DE,延长 ED 交 BC 的延长线于点 F.
(1)求证:△BEF 是等边三角形;
(2)若 AB=12,求 DE 的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,求∠ABC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点M是Rt△ABC的斜边AB的中点,连接CM,作线段CM的垂直平分线,分别交边CB和CA的延长线于点D、E,若∠C=90°,AB=20,tanB=
,则DE= . 
相关试题