【题目】在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).
(1)求抛物线的表达式;
(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;
(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.
![]()
参考答案:
【答案】(1)抛物线的表达式为y=x2+2x﹣3;
(2)y的取值范围是﹣4≤y<5;
(3)b的取值范围是3<b<
.
【解析】试题分析:(1)把点(1,0)代入y=x2+mx+2m﹣7即可求得m的值,从而得二次函数的解析式;(2)求出当x=﹣1时和当x=﹣4时时y的值,根据函数的增减性确定y的取值范围;(3)把抛物线y=x2+2x﹣3的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得b=
.结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<
.
试题解析:
(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),
∴1+m+2m﹣7=0,解得m=2,
∴抛物线的表达式为y=x2+2x﹣3;
(2)y=x2+2x﹣3=(x+1)2﹣4,
∵当﹣4<x<﹣1时,y随x增大而减小;
当﹣1≤x<1时,y随x增大而增大,
∴当x=﹣1,y最小=﹣4,
当x=﹣4时,y=5,
∴﹣4<x<1时,y的取值范围是﹣4≤y<5;
![]()
(3)y=x2+2x﹣3与x轴交于点(﹣3,0),(1,0),翻折后可得新图象M如图中红色部分,
![]()
把抛物线y=x2+2x﹣3=(x+1)2﹣4的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),
当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;
当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,
即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得b=
.
结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1所示,将一副三角尺的直角顶点重合在点O处.

①∠AOC与∠BOD相等吗?说明理由;
②∠AOD与∠BOC数量上有什么关系吗?说明理由.
(2)若将这副三角尺按图2所示摆放,直角顶点重合在点O处,不添加字母,分析图中现有标注字母所表示的角;
①找出图中相等关系的角;
②找出图中互补关系的角,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)出数轴上点B表示的数 ;点P表示的数 (用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,点A(0,3),点B(﹣3,0),点C(1,0),点D(0,1),连AB,AC,BD.
(1)求证:BD⊥AC;
(2)如图②,将△BOD绕着点O旋转,得到△B′OD′,当点D′落在AC上时,求AB′的长;
(3)试直接写出(Ⅱ)中点B′的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数
的图象如图所示,有以下结论:①
;②
;③
;④
;⑤
其中所有正确结论的序号是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(0,a),B(0,b),C(m,b)且(a-4)2+
=0,
(1)求C点坐标
(2)作DE DC,交y轴于E点,EF为 AED的平分线,且DFE= 90o。 求证:FD平分ADO;
(3)E 在 y 轴负半轴上运动时,连 EC,点 P 为 AC 延长线上一点,EM 平分∠AEC,且 PM⊥EM,PN⊥x 轴于 N 点,PQ 平分∠APN,交 x 轴于 Q 点,则 E 在运动过程中,
的大小是否发生变化,若不变,求出其值.

相关试题