【题目】有这样一个问题:探究函数y=﹣
+|x|的图象与性质. 小军根据学习函数的经验,对函数y=﹣
+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
(1)函数y=﹣
+|x|的自变量x的取值范围是;
(2)表是y与x的几组对应值
x | ﹣2 | ﹣1.9 | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 1 | 2 | 3 | 4 | … |
y | 2 | 1.60 | 0.80 | 0 | ﹣0.72 | ﹣1.41 | ﹣0.37 | 0 | 0.76 | 1.55 | … |
在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;![]()
(3)观察图象,函数的最小值是;
(4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外): .
参考答案:
【答案】
(1)x≥﹣2
(2)解:如图所示:
![]()
(3)﹣ ![]()
(4)当﹣2≤x<0时,y随x的增大而减小
【解析】解:(1)由x+2≥0,得,x≥﹣2, ∴函数y=﹣
+|x|的自变量x的取值范围是x≥﹣2,
所以答案是:x≥﹣2;(2)该函数的图象如图所示;![]()
⑶由图象得,函数的最小值是﹣
;
所以答案是:﹣
;(4)该函数的其它性质:当﹣2≤x<0时,y随x的增大而减小;
所以答案是:当﹣2≤x<0时,y随x的增大而减小.
【考点精析】本题主要考查了函数自变量的取值范围和函数的图象的相关知识点,需要掌握使函数有意义的自变量的取值的全体,叫做自变量的取值范围;函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为______cm2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.
(1)请在图中画出△AEF.
(2)请在x轴上找一个点P,使PA+PE的值最小,并直接写出P点的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】填空或填写理由.
(1)如图甲,∵∠ =∠ (已知);
∴AB∥CD( )
(2)如图乙,已知直线a∥b,∠3=80°,求∠1,∠2的度数.
解:∵a∥b,( )
∴∠1=∠4( )
又∵∠3=∠4( )
∠3=80°(已知)
∴∠1=( )(等量代换)
又∵∠2+∠3=180°
∴∠2=( )(等式的性质)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数

100
150
200
500
800
1000
摸到白球的次数

58
96
116
295
484
601
摸到白球的频率

0.58
0.64
0.58
0.59
0.605
0.601
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.
(1)求该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C.

(1)求点C的坐标;
(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;
(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.
相关试题