【题目】如图,已知A(4,a),B(﹣2,﹣4)是一次函数y=kx+b的图象和反比例函数y=
的图象的交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
![]()
参考答案:
【答案】(1)y=
, y=x﹣2(2)6
【解析】
(1)A (4,a),B (﹣2,﹣4)两点在反比例函数y=
的图象上,则由m=xy,得4a=(﹣2)×(﹣4)=m,可求a、m的值,再将A、B两点坐标代入y=kx+b中求k、b的值即可;
(2)设直线AB交y轴于C点,由直线AB的解析式求C点坐标,根据S△AOB=S△AOC+△BOC求面积.
(1)将A (4,a),B (﹣2,﹣4)两点坐标代入y=
中,
得4a=(﹣2)×(﹣4)=m,
解得a=2,m=8,
将A(4,2),B(﹣2,﹣4)代入y=kx+b中,
得
,
解得
,
∴反比例函数解析式为y=
,一次函数的解祈式为y=x﹣2;
(2)如图:设直线AB交y轴于C点,
![]()
由直线AB的解析式y=x﹣2得C(0,﹣2),
∴S△AOB=S△AOC+S△BOC=
×2×4+
×2×2=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】补全解答过程:
已知:如图,直线AB∥CD,直线EF与直线AB、CD分别交于点G、H,GM平分∠FGB,∠3=60°,求∠1的度数。

解:∵EF与CD交于点H(已知)
∴∠3=∠4(_______________)
∵∠3=60°(已知)
∴∠4=60°(______________)
∵AB∥CD,EF与AB、CD交于点G、H(已知)
∴∠4+∠FGB=180°(______________)
∴∠FGB=______°
∵GM平分∠FGB(已知)
∴∠1=_____°(______________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.
(1)求A、B两种纪念品的进价分别为多少?
(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如图统计图.
请根据图中提供的信息,解答下列问题:
(1)所抽取的样本容量为 .
(2)若抽取的学生成绩用扇形图来描述,则表示“第三组(79.5~89.5 )”的扇形的圆心角度数为多少?
(3)如果成绩在80分以上(含80分)的同学可以获奖,请估计该校有多少名同学获奖. -
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,过点
作
交射线
于点
,若
是等腰三角形,则
的大小为_________度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.
(1)求∠CBE的度数;
(2)若∠F=25°,求证:BE∥DF.

相关试题