【题目】如图,已知四边形
为正方形,
,点
为对角线
上一动点,连接
,过点
作
.交
于点
,以
、
为邻边作矩形
,连接
.
![]()
(1)求证:矩形
是正方形;
(2)探究:
的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
参考答案:
【答案】(1)见解析 (2)是定值,8
【解析】
(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;
(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.
(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
![]()
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,
![]()
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
(2)CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,![]()
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=
AB=
×4
=8,
∴CE+CG=8是定值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点P为线段AB上的动点(与A、B两点不重合),在同一平面内,把线段AP、BP分别折成等边△CDP和△EFP,且D、P、F三点共线,如图所示.

(1)若DF=2,求AB的长;
(2)若AB=18时,等边△CDP和△EFP的面积之和是否有最大值,如果有最大值,求最大值及此时P点位置,若没有最大值,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 ,在
中,
,
,点
、
为
边上两点, 将
、
分别沿
、
折叠,
、
两点重合于点
,若
,则
的长为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动
秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).

(1)求点B的坐标,并用含t的代数式表示OP,OQ;
(2)当t=1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;
(3)在(2)的条件下,矩形对角线AC,BO交于M,取OM中点G,BM中点H,求证:当t=1时四边形DGPH是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)找规律:1,2,4,8……,则第n个数为________.
(2)求和
,观察发现,从第2个加数起每一个加数都是前一个加数的2倍.于是可假设:
①两边乘以2得:
②②-①得:
,所以:
类比做一做,求
的值.(3)仿照(2)的做法求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生
已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为___________.
相关试题