【题目】如图,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分线DG交∠BAC的角平分线AD于点D,DE⊥AB于E,DF⊥AC于F,则下列结论一定成立的是( )
![]()
A.
B.
C.
D. ![]()
参考答案:
【答案】D
【解析】
如图,连接DB、DC.只要证明△DEB≌△DFC,推出BE=CF,由△ADE≌△ADF,推出AE=AF,推出AB+AC=(AE+BE)+(AF﹣CF)=2AE,即AE=
(AB+AC).
如图,连接DB、DC.
![]()
∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.
∵DG垂直平分线段BC,∴DB=DC.
在Rt△DEB和Rt△DFC中,∵
,∴△DEB≌△DFC,∴BE=CF,同理△ADE≌△ADF,∴AE=AF,∴AB+AC=(AE+BE)+(AF﹣CF)=2AE,∴AE=
(AB+AC)=
(b+c).
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)①画出△ABC关于y轴对称的图形△A1B1C1 , 并直接写出C1点坐标;
②以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2 , 并直接写出C2点坐标;
(2)如果点D(a,b)在线段AB上,请直接写出经过(1)②的变化后点D的对应点D2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料.
点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪两点的距离?
(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP= ,当BP=4时,x= ;当|x﹣3|+|x+2|的值最小时,x的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).
用电时间段
收费标准
峰电
08:00—22:00
0.56元/千瓦时
谷电
22:00—08:00
0.28元/千瓦时
已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意,列方程组得_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C,D和E,B分别是∠MAN的边AM和AN上的两点,且AC=AB,AD=AE,CE和BD相交于F点,给出下列结论:①△ABD≌△ACE;②△BFE≌△CFD;③F在∠MAN的平分线上.其中正确的是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,四边形ABCD中,∠A与∠B互补,∠C=90°,DE⊥AB,E为垂足.若∠EDC=60°,求∠B、∠A及∠ADE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)如图2,当直线AC与⊙O相切时,求⊙O的半径.
相关试题