【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).![]()
(1)①画出△ABC关于y轴对称的图形△A1B1C1 , 并直接写出C1点坐标;
②以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2 , 并直接写出C2点坐标;
(2)如果点D(a,b)在线段AB上,请直接写出经过(1)②的变化后点D的对应点D2的坐标.
参考答案:
【答案】
(1)
解:①如图所示:△A1B1C1,即为所求,
C1点坐标为:(3,2);
②:如图所示:△A2B2C2,即为所求,
C2点坐标为:(﹣6,4);
![]()
(2)
解:如果点D(a,b)在线段AB上,经过(1)②的变化后D的对应点D2的坐标为:(2a,2b).
【解析】(1)利用关于y轴对称点的性质得出各对应点位置,进而得出答案;(2)利用位似图形的性质得出D点坐标变化规律即可.
【考点精析】掌握作轴对称图形和作图-位似变换是解答本题的根本,需要知道画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线;对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?
(参考数据:tan53°≈
,sin53°≈
,tan64°≈2,sin64°≈
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料.
点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪两点的距离?
(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP= ,当BP=4时,x= ;当|x﹣3|+|x+2|的值最小时,x的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料.
点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪两点的距离?
(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP= ,当BP=4时,x= ;当|x﹣3|+|x+2|的值最小时,x的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).
用电时间段
收费标准
峰电
08:00—22:00
0.56元/千瓦时
谷电
22:00—08:00
0.28元/千瓦时
已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意,列方程组得_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分线DG交∠BAC的角平分线AD于点D,DE⊥AB于E,DF⊥AC于F,则下列结论一定成立的是( )

A.
B.
C.
D. 
相关试题