【题目】已知如图,四边形ABCD中,∠A与∠B互补,∠C=90°,DE⊥AB,E为垂足.若∠EDC=60°,求∠B、∠A及∠ADE的度数.
![]()
参考答案:
【答案】∵∠A+∠B="180°"
∴AD∥BC
∴∠C+∠ADC="180°"
∵∠C=90°
∴∠ADC=90°
又∵∠EDC=60°
∴∠ADE=30°
∵DE⊥AB
∴∠AED=90°
在△ADE中∠ADE=30°∠AED=90°
∴∠A=60°
∵∠A+∠B=180°
∴∠B=120°
【解析】
根据∠A与∠B互补即可得到AD∥BC,由平行线的性质,可以得到∠C与∠ADC互补,即可得到∠ADC,进而求得∠ADE.根据三角形内角和定理即可得到∠A,根据平行线的性质得到∠B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).
用电时间段
收费标准
峰电
08:00—22:00
0.56元/千瓦时
谷电
22:00—08:00
0.28元/千瓦时
已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意,列方程组得_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分线DG交∠BAC的角平分线AD于点D,DE⊥AB于E,DF⊥AC于F,则下列结论一定成立的是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C,D和E,B分别是∠MAN的边AM和AN上的两点,且AC=AB,AD=AE,CE和BD相交于F点,给出下列结论:①△ABD≌△ACE;②△BFE≌△CFD;③F在∠MAN的平分线上.其中正确的是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)如图2,当直线AC与⊙O相切时,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.
(1)求每吨水的政府补贴优惠价与市场调节价分别是多少;
(2)小明家3月份用水24吨,他家应交水费多少元?
相关试题