【题目】把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )
![]()
A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)
参考答案:
【答案】A
【解析】
设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.
解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.
∴GF=DH=y,AG=CD=x,
∵HE+CD=n,
∴x+y=n,
∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,
宽为:CD=x,
∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x
∵长方形GHEF的长为:GH=m﹣AG=m﹣x,
宽为:HE=y,
∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,
∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,
故选:A.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解我市3路公共汽车的运营情况,公交部门随机统计了某天3路公共汽车50个班次中每个运行班次的载客量,得到如下频数分布直方图,如果以各组的组中值代表各组实际数据,请分析统计数据完成下列问题:

(1)直方图中m值为________;
(2)这天载客量的中位数是__________,众数是__________;
(3)估计往常3路公共汽车平均每班次的载客量大约是多少(精确到整数)?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车分别从相距240千米的A,B两地同时相向匀速出发,甲车出发0.5小时后发现有东西落在出发地A地,于是立即按原速沿原路返回,在A地取到东西后立即以原速继续向B地行驶,并在途中与乙车第一次相遇,相遇后甲、乙两车继续以各自的速度朝着各自的方向匀速行驶,当乙车到达A地后,立即掉头以原速开往B地(甲车取东西、掉头和乙车掉头的时间均忽略不计).两车之间的距离y(千米)与甲车出发的时间x(小时)之间的部分关系如图所示,则当乙车到达B地时,甲车与B地的距离为_____千米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(-4,0).
(1)画出△AOB绕点A逆时针旋转90°后得到的图形△A1O1B1;并写出点B1的坐标 ;
(2)画出△AOB关于点P(0,-1)的中心对称图形△A2O2B2,并写出点B2的坐标 ;
(3)若点Q为x轴上的一点,当B1Q+B2 Q的和最小时,直接写出点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.
(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A,B,C 三个村庄的位置;
(2)C 村离 A 村有多远?
(3)邮递员一共骑行了多少千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>
;其中正确的个数为( )
A. 0 B. 1 C. 2 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】[新定义]:
为数轴上三点,若点
到点
的距离是点
到点
的距离的3倍,我们就称点
的幸运点.[特例感知]
(1)如图1,点
表示的数为-1,点
表示的数为3.表示2的点
到点
的距离是3,到点
的距离是1,那么点
是
的幸运点,①
的幸运点表示的数是________;A.-1 B.0 C.1 D.2
②试说明
的幸运点.(2)如图2,
为数轴上两点,点
所表示的数为-2,点
所表示的数为4,则
的幸运点表示的数为________.
[拓展应用]
(3)如图3,
为数轴上两点,点
所表示的数为-20,点
所表示的数为40.有一只电子蚂蚁
从点
出发,以5个单位每秒的速度向左运动,到达点
停止.当t为何值时,
、
和
三个点中恰好有一个点为其余两点的幸运点?
相关试题