【题目】如图,AB 是⊙O 的直径,CD 与⊙O 相切于点 C,与 AB 的延长线交于点 D,DE⊥AD 且与AC 的延长线交于点 E.
(1)求证:DC=DE;
(2)若 AD=2ED,AB=3,求BD的长.
![]()
参考答案:
【答案】(1)证明见解析.(2)1.
【解析】试题分析:(1)利用切线的性质结合等腰三角形的性质得出
进而得出答案;
(2)设
则
利用勾股定理得出BD的长.
试题解析:(1)证明:连接OC,
![]()
∵CD是
的切线,
又
∵OC=OA,∴∠ACO=∠EAD,
故∠DCE=∠E,
∴DC=DE,
(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,
在
中,
∵
,
由(1)知,
在
中,
则
解得:
(舍去),
故BD=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于二次函数 y ax2 2a 1x a 1a 0,有下列结论:①其图象与 x 轴一定相交;②若 a 0 , 函数在 x 1 时,y 随 x 的增大而减小;③无论 a 取何值,抛物线的顶点始终在同一条直线上;④无论 a 取何值,函数图象都经过同一个点.其中所有正确的结论是:( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角三角形
中,
,
平分
交
于点
,
平分
交
于点
,
、
相交于点
,过点
作
,过点
作
交
于点
.下列结论:①
;②
;③
平分
;④
.其中正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】最近流感高发期,在预防流感期间学校坚持天天消毒,下图是某次消毒时教室内空气中消毒液浓度 y(单位:毫克/立方米)随时间 x(单位:分钟)的变化情况图.从开始喷药到喷药结束的 10 分钟内(包括第十分钟),y 是 x 的二次函数;喷药结束后(从第十分钟开始),y 是 x 的反比例函数.
(1)如果点 A 是图中二次函数的顶点,求二次函数和反比例函数的解析式 (要写出自变量取值范围);
(2)已知空气中消毒液浓度 y 不少于 15 毫克/立方米且持续时间不少于 8 分钟才能有效消毒,通过计算,请你回答这次消毒是否有效?

-
科目: 来源: 题型:
查看答案和解析>>【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.

(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】乌鲁木齐周边多地盛产草莓,今年某水果销售店在草莓销售旺季,以15元/kg 的成本价进50kg有机草莓,销售人员销售发现草莓损坏率为25%;
(1)对于水果店来说完好的草莓实际成本价是多少元/kg?
(2)按照这个实际成本设计销售单价,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象,设该水果销售店试销草莓获得的利润为W元,求W的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
与
不平行,
.
为四边形
的对角线,
分别是
的中点下列结论:①
;②四边形
是矩形;③
平分
④
;⑤四边形
是菱形.其中正确的个数是 ( )
A.
个B.
个C.
个D.
个
相关试题